mirror of
https://github.com/explosion/spaCy.git
synced 2025-02-06 14:40:34 +03:00
203 lines
7.1 KiB
Python
203 lines
7.1 KiB
Python
from pathlib import Path
|
|
from wasabi import Printer
|
|
import srsly
|
|
import re
|
|
import sys
|
|
|
|
from ..tokens import DocBin
|
|
from ..gold.converters import iob2docs, conll_ner2docs, json2docs
|
|
|
|
|
|
# Converters are matched by file extension except for ner/iob, which are
|
|
# matched by file extension and content. To add a converter, add a new
|
|
# entry to this dict with the file extension mapped to the converter function
|
|
# imported from /converters.
|
|
|
|
CONVERTERS = {
|
|
#"conllubio": conllu2docs, TODO
|
|
#"conllu": conllu2docs, TODO
|
|
#"conll": conllu2docs, TODO
|
|
"ner": conll_ner2docs,
|
|
"iob": iob2docs,
|
|
"json": json2docs,
|
|
}
|
|
|
|
|
|
# File types
|
|
FILE_TYPES = ("json", "jsonl", "msg")
|
|
FILE_TYPES_STDOUT = ("json", "jsonl")
|
|
|
|
|
|
def convert(
|
|
# fmt: off
|
|
input_path: ("Input file or directory", "positional", None, Path),
|
|
output_dir: ("Output directory.", "positional", None, Path),
|
|
file_type: (f"Type of data to produce: {FILE_TYPES}", "option", "t", str, FILE_TYPES) = "spacy",
|
|
n_sents: ("Number of sentences per doc (0 to disable)", "option", "n", int) = 1,
|
|
seg_sents: ("Segment sentences (for -c ner)", "flag", "s") = False,
|
|
model: ("Model for sentence segmentation (for -s)", "option", "b", str) = None,
|
|
morphology: ("Enable appending morphology to tags", "flag", "m", bool) = False,
|
|
merge_subtokens: ("Merge CoNLL-U subtokens", "flag", "T", bool) = False,
|
|
converter: (f"Converter: {tuple(CONVERTERS.keys())}", "option", "c", str) = "auto",
|
|
ner_map: ("NER tag mapping (as JSON-encoded dict of entity types)", "option", "N", Path) = None,
|
|
lang: ("Language (if tokenizer required)", "option", "l", str) = None,
|
|
# fmt: on
|
|
):
|
|
"""
|
|
Convert files into json or DocBin format for use with train command and other
|
|
experiment management functions.
|
|
"""
|
|
cli_args = locals()
|
|
no_print = output_dir == "-"
|
|
output_dir = Path(output_dir) if output_dir != "-" else "-"
|
|
msg = Printer(no_print=no_print)
|
|
verify_cli_args(msg, **cli_args)
|
|
converter = _get_converter(msg, converter, input_path)
|
|
ner_map = srsly.read_json(ner_map) if ner_map is not None else None
|
|
for input_loc in walk_directory(input_path):
|
|
input_data = input_loc.open("r", encoding="utf-8").read()
|
|
# Use converter function to convert data
|
|
func = CONVERTERS[converter]
|
|
docs = func(
|
|
input_data,
|
|
n_sents=n_sents,
|
|
seg_sents=seg_sents,
|
|
append_morphology=morphology,
|
|
merge_subtokens=merge_subtokens,
|
|
lang=lang,
|
|
model=model,
|
|
no_print=no_print,
|
|
ner_map=ner_map,
|
|
)
|
|
suffix = f".{file_type}"
|
|
subpath = input_loc.relative_to(input_path)
|
|
output_file = (output_dir / subpath).with_suffix(suffix)
|
|
if not output_file.parent.exists():
|
|
output_file.parent.mkdir(parents=True)
|
|
if file_type == "json":
|
|
data = docs2json(docs)
|
|
srsly.write_json(output_file, docs2json(docs))
|
|
else:
|
|
data = DocBin(docs=docs).to_bytes()
|
|
with output_file.open("wb") as file_:
|
|
file_.write(data)
|
|
msg.good(f"Generated output file ({len(docs)} documents): {output_file}")
|
|
|
|
|
|
def autodetect_ner_format(input_data):
|
|
# guess format from the first 20 lines
|
|
lines = input_data.split("\n")[:20]
|
|
format_guesses = {"ner": 0, "iob": 0}
|
|
iob_re = re.compile(r"\S+\|(O|[IB]-\S+)")
|
|
ner_re = re.compile(r"\S+\s+(O|[IB]-\S+)$")
|
|
for line in lines:
|
|
line = line.strip()
|
|
if iob_re.search(line):
|
|
format_guesses["iob"] += 1
|
|
if ner_re.search(line):
|
|
format_guesses["ner"] += 1
|
|
if format_guesses["iob"] == 0 and format_guesses["ner"] > 0:
|
|
return "ner"
|
|
if format_guesses["ner"] == 0 and format_guesses["iob"] > 0:
|
|
return "iob"
|
|
return None
|
|
|
|
|
|
def walk_directory(path):
|
|
if not path.is_dir():
|
|
return [path]
|
|
paths = [path]
|
|
locs = []
|
|
seen = set()
|
|
for path in paths:
|
|
if str(path) in seen:
|
|
continue
|
|
seen.add(str(path))
|
|
if path.parts[-1].startswith("."):
|
|
continue
|
|
elif path.is_dir():
|
|
paths.extend(path.iterdir())
|
|
else:
|
|
locs.append(path)
|
|
return locs
|
|
|
|
|
|
def verify_cli_args(
|
|
msg,
|
|
input_path,
|
|
output_dir,
|
|
file_type,
|
|
n_sents,
|
|
seg_sents,
|
|
model,
|
|
morphology,
|
|
merge_subtokens,
|
|
converter,
|
|
ner_map,
|
|
lang
|
|
):
|
|
if converter == "ner" or converter == "iob":
|
|
input_data = input_path.open("r", encoding="utf-8").read()
|
|
converter_autodetect = autodetect_ner_format(input_data)
|
|
if converter_autodetect == "ner":
|
|
msg.info("Auto-detected token-per-line NER format")
|
|
converter = converter_autodetect
|
|
elif converter_autodetect == "iob":
|
|
msg.info("Auto-detected sentence-per-line NER format")
|
|
converter = converter_autodetect
|
|
else:
|
|
msg.warn(
|
|
"Can't automatically detect NER format. Conversion may not",
|
|
"succeed. See https://spacy.io/api/cli#convert"
|
|
)
|
|
if file_type not in FILE_TYPES_STDOUT and output_dir == "-":
|
|
# TODO: support msgpack via stdout in srsly?
|
|
msg.fail(
|
|
f"Can't write .{file_type} data to stdout",
|
|
"Please specify an output directory.",
|
|
exits=1,
|
|
)
|
|
if not input_path.exists():
|
|
msg.fail("Input file not found", input_path, exits=1)
|
|
if output_dir != "-" and not Path(output_dir).exists():
|
|
msg.fail("Output directory not found", output_dir, exits=1)
|
|
if input_path.is_dir():
|
|
input_locs = walk_directory(input_path)
|
|
if len(input_locs) == 0:
|
|
msg.fail("No input files in directory", input_path, exits=1)
|
|
file_types = list(set([loc.suffix[1:] for loc in input_locs]))
|
|
if len(file_types) >= 2:
|
|
file_types = ",".join(file_types)
|
|
msg.fail("All input files must be same type", file_types, exits=1)
|
|
if converter == "auto":
|
|
converter = file_types[0]
|
|
else:
|
|
converter = input_path.suffix[1:]
|
|
if converter not in CONVERTERS:
|
|
msg.fail(f"Can't find converter for {converter}", exits=1)
|
|
return converter
|
|
|
|
|
|
def _get_converter(msg, converter, input_path):
|
|
if input_path.is_dir():
|
|
input_path = walk_directory(input_path)[0]
|
|
if converter == "auto":
|
|
converter = input_path.suffix[1:]
|
|
if converter == "ner" or converter == "iob":
|
|
with input_path.open() as file_:
|
|
input_data = file_.read()
|
|
converter_autodetect = autodetect_ner_format(input_data)
|
|
if converter_autodetect == "ner":
|
|
msg.info("Auto-detected token-per-line NER format")
|
|
converter = converter_autodetect
|
|
elif converter_autodetect == "iob":
|
|
msg.info("Auto-detected sentence-per-line NER format")
|
|
converter = converter_autodetect
|
|
else:
|
|
msg.warn(
|
|
"Can't automatically detect NER format. "
|
|
"Conversion may not succeed. "
|
|
"See https://spacy.io/api/cli#convert"
|
|
)
|
|
return converter
|