756b66b7c0
* Move Turkish lemmas to a json file Rather than a large dict in Python source, the data is now a big json file. This includes a method for loading the json file, falling back to a compressed file, and an update to MANIFEST.in that excludes json in the spacy/lang directory. This focuses on Turkish specifically because it has the most language data in core. * Transition all lemmatizer.py files to json This covers all lemmatizer.py files of a significant size (>500k or so). Small files were left alone. None of the affected files have logic, so this was pretty straightforward. One unusual thing is that the lemma data for Urdu doesn't seem to be used anywhere. That may require further investigation. * Move large lang data to json for fr/nb/nl/sv These are the languages that use a lemmatizer directory (rather than a single file) and are larger than English. For most of these languages there were many language data files, in which case only the large ones (>500k or so) were converted to json. It may or may not be a good idea to migrate the remaining Python files to json in the future. * Fix id lemmas.json The contents of this file were originally just copied from the Python source, but that used single quotes, so it had to be properly converted to json first. * Add .json.gz to gitignore This covers the json.gz files built as part of distribution. * Add language data gzip to build process Currently this gzip data on every build; it works, but it should be changed to only gzip when the source file has been updated. * Remove Danish lemmatizer.py Missed this when I added the json. * Update to match latest explosion/srsly#9 The way gzipped json is loaded/saved in srsly changed a bit. * Only compress language data if necessary If a .json.gz file exists and is newer than the corresponding json file, it's not recompressed. * Move en/el language data to json This only affected files >500kb, which was nouns for both languages and the generic lookup table for English. * Remove empty files in Norwegian tokenizer It's unclear why, but the Norwegian (nb) tokenizer had empty files for adj/adv/noun/verb lemmas. This may have been a result of copying the structure of the English lemmatizer. This removed the files, but still creates the empty sets in the lemmatizer. That may not actually be necessary. * Remove dubious entries in English lookup.json " furthest" and " skilled" - both prefixed with a space - were in the English lookup table. That seems obviously wrong so I have removed them. * Fix small issues with en/fr lemmatizers The en tokenizer was including the removed _nouns.py file, so that's removed. The fr tokenizer is unusual in that it has a lemmatizer directory with both __init__.py and lemmatizer.py. lemmatizer.py had not been converted to load the json language data, so that was fixed. * Auto-format * Auto-format * Update srsly pin * Consistently use pathlib paths |
||
---|---|---|
.buildkite | ||
.github | ||
bin | ||
examples | ||
include | ||
spacy | ||
website | ||
.flake8 | ||
.gitignore | ||
.travis.yml | ||
azure-pipelines.yml | ||
CITATION | ||
CONTRIBUTING.md | ||
fabfile.py | ||
LICENSE | ||
Makefile | ||
MANIFEST.in | ||
netlify.toml | ||
pyproject.toml | ||
README.md | ||
requirements.txt | ||
setup.py |
spaCy: Industrial-strength NLP
spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. spaCy comes with pre-trained statistical models and word vectors, and currently supports tokenization for 50+ languages. It features state-of-the-art speed, convolutional neural network models for tagging, parsing and named entity recognition and easy deep learning integration. It's commercial open-source software, released under the MIT license.
💫 Version 2.1 out now! Check out the release notes here.
📖 Documentation
Documentation | |
---|---|
spaCy 101 | New to spaCy? Here's everything you need to know! |
Usage Guides | How to use spaCy and its features. |
New in v2.1 | New features, backwards incompatibilities and migration guide. |
API Reference | The detailed reference for spaCy's API. |
Models | Download statistical language models for spaCy. |
Universe | Libraries, extensions, demos, books and courses. |
Changelog | Changes and version history. |
Contribute | How to contribute to the spaCy project and code base. |
💬 Where to ask questions
The spaCy project is maintained by @honnibal and @ines. Please understand that we won't be able to provide individual support via email. We also believe that help is much more valuable if it's shared publicly, so that more people can benefit from it.
Type | Platforms |
---|---|
🚨 Bug Reports | GitHub Issue Tracker |
🎁 Feature Requests | GitHub Issue Tracker |
👩💻 Usage Questions | Stack Overflow · Gitter Chat · Reddit User Group |
🗯 General Discussion | Gitter Chat · Reddit User Group |
Features
- Non-destructive tokenization
- Named entity recognition
- Support for 50+ languages
- Pre-trained statistical models and word vectors
- State-of-the-art speed
- Easy deep learning integration
- Part-of-speech tagging
- Labelled dependency parsing
- Syntax-driven sentence segmentation
- Built in visualizers for syntax and NER
- Convenient string-to-hash mapping
- Export to numpy data arrays
- Efficient binary serialization
- Easy model packaging and deployment
- Robust, rigorously evaluated accuracy
📖 For more details, see the facts, figures and benchmarks.
Install spaCy
For detailed installation instructions, see the documentation.
- Operating system: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual Studio)
- Python version: Python 2.7, 3.5+ (only 64 bit)
- Package managers: pip · conda (via
conda-forge
)
pip
Using pip, spaCy releases are available as source packages and binary wheels
(as of v2.0.13
).
pip install spacy
When using pip it is generally recommended to install packages in a virtual environment to avoid modifying system state:
python -m venv .env
source .env/bin/activate
pip install spacy
conda
Thanks to our great community, we've finally re-added conda support. You can now
install spaCy via conda-forge
:
conda config --add channels conda-forge
conda install spacy
For the feedstock including the build recipe and configuration, check out this repository. Improvements and pull requests to the recipe and setup are always appreciated.
Updating spaCy
Some updates to spaCy may require downloading new statistical models. If you're
running spaCy v2.0 or higher, you can use the validate
command to check if
your installed models are compatible and if not, print details on how to update
them:
pip install -U spacy
python -m spacy validate
If you've trained your own models, keep in mind that your training and runtime inputs must match. After updating spaCy, we recommend retraining your models with the new version.
📖 For details on upgrading from spaCy 1.x to spaCy 2.x, see the migration guide.
Download models
As of v1.7.0, models for spaCy can be installed as Python packages.
This means that they're a component of your application, just like any
other module. Models can be installed using spaCy's download
command,
or manually by pointing pip to a path or URL.
Documentation | |
---|---|
Available Models | Detailed model descriptions, accuracy figures and benchmarks. |
Models Documentation | Detailed usage instructions. |
# download best-matching version of specific model for your spaCy installation
python -m spacy download en_core_web_sm
# out-of-the-box: download best-matching default model
python -m spacy download en
# pip install .tar.gz archive from path or URL
pip install /Users/you/en_core_web_sm-2.1.0.tar.gz
pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.1.0/en_core_web_sm-2.1.0.tar.gz
Loading and using models
To load a model, use spacy.load()
with the model name, a shortcut link or a
path to the model data directory.
import spacy
nlp = spacy.load("en_core_web_sm")
doc = nlp(u"This is a sentence.")
You can also import
a model directly via its full name and then call its
load()
method with no arguments.
import spacy
import en_core_web_sm
nlp = en_core_web_sm.load()
doc = nlp(u"This is a sentence.")
📖 For more info and examples, check out the models documentation.
Support for older versions
If you're using an older version (v1.6.0
or below), you can still download
and install the old models from within spaCy using python -m spacy.en.download all
or python -m spacy.de.download all
. The .tar.gz
archives are also
attached to the v1.6.0 release.
To download and install the models manually, unpack the archive, drop the
contained directory into spacy/data
and load the model via spacy.load('en')
or spacy.load('de')
.
Compile from source
The other way to install spaCy is to clone its GitHub repository and build it from source. That is the common way if you want to make changes to the code base. You'll need to make sure that you have a development environment consisting of a Python distribution including header files, a compiler, pip, virtualenv and git installed. The compiler part is the trickiest. How to do that depends on your system. See notes on Ubuntu, OS X and Windows for details.
# make sure you are using the latest pip
python -m pip install -U pip
git clone https://github.com/explosion/spaCy
cd spaCy
python -m venv .env
source .env/bin/activate
export PYTHONPATH=`pwd`
pip install -r requirements.txt
python setup.py build_ext --inplace
Compared to regular install via pip, requirements.txt additionally installs developer dependencies such as Cython. For more details and instructions, see the documentation on compiling spaCy from source and the quickstart widget to get the right commands for your platform and Python version.
Ubuntu
Install system-level dependencies via apt-get
:
sudo apt-get install build-essential python-dev git
macOS / OS X
Install a recent version of XCode, including the so-called "Command Line Tools". macOS and OS X ship with Python and git preinstalled.
Windows
Install a version of the Visual C++ Build Tools or Visual Studio Express that matches the version that was used to compile your Python interpreter. For official distributions these are VS 2008 (Python 2.7), VS 2010 (Python 3.4) and VS 2015 (Python 3.5).
Run tests
spaCy comes with an extensive test suite. In order to run the
tests, you'll usually want to clone the repository and build spaCy from source.
This will also install the required development dependencies and test utilities
defined in the requirements.txt
.
Alternatively, you can find out where spaCy is installed and run pytest
on
that directory. Don't forget to also install the test utilities via spaCy's
requirements.txt
:
python -c "import os; import spacy; print(os.path.dirname(spacy.__file__))"
pip install -r path/to/requirements.txt
python -m pytest <spacy-directory>
See the documentation for more details and examples.