mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			57 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			57 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from spacy.pipeline import EntityRecognizer
 | |
| from spacy.tokens import Span
 | |
| import pytest
 | |
| 
 | |
| from ..util import get_doc
 | |
| from spacy.pipeline.defaults import default_ner
 | |
| 
 | |
| 
 | |
| def test_doc_add_entities_set_ents_iob(en_vocab):
 | |
|     text = ["This", "is", "a", "lion"]
 | |
|     doc = get_doc(en_vocab, text)
 | |
|     config = {
 | |
|         "learn_tokens": False,
 | |
|         "min_action_freq": 30,
 | |
|         "beam_width": 1,
 | |
|         "beam_update_prob": 1.0,
 | |
|     }
 | |
|     ner = EntityRecognizer(en_vocab, default_ner(), **config)
 | |
|     ner.begin_training([])
 | |
|     ner(doc)
 | |
|     assert len(list(doc.ents)) == 0
 | |
|     assert [w.ent_iob_ for w in doc] == (["O"] * len(doc))
 | |
| 
 | |
|     doc.ents = [(doc.vocab.strings["ANIMAL"], 3, 4)]
 | |
|     assert [w.ent_iob_ for w in doc] == ["O", "O", "O", "B"]
 | |
| 
 | |
|     doc.ents = [(doc.vocab.strings["WORD"], 0, 2)]
 | |
|     assert [w.ent_iob_ for w in doc] == ["B", "I", "O", "O"]
 | |
| 
 | |
| 
 | |
| def test_ents_reset(en_vocab):
 | |
|     text = ["This", "is", "a", "lion"]
 | |
|     doc = get_doc(en_vocab, text)
 | |
|     config = {
 | |
|         "learn_tokens": False,
 | |
|         "min_action_freq": 30,
 | |
|         "beam_width": 1,
 | |
|         "beam_update_prob": 1.0,
 | |
|     }
 | |
|     ner = EntityRecognizer(en_vocab, default_ner(), **config)
 | |
|     ner.begin_training([])
 | |
|     ner(doc)
 | |
|     assert [t.ent_iob_ for t in doc] == (["O"] * len(doc))
 | |
|     doc.ents = list(doc.ents)
 | |
|     assert [t.ent_iob_ for t in doc] == (["O"] * len(doc))
 | |
| 
 | |
| 
 | |
| def test_add_overlapping_entities(en_vocab):
 | |
|     text = ["Louisiana", "Office", "of", "Conservation"]
 | |
|     doc = get_doc(en_vocab, text)
 | |
|     entity = Span(doc, 0, 4, label=391)
 | |
|     doc.ents = [entity]
 | |
| 
 | |
|     new_entity = Span(doc, 0, 1, label=392)
 | |
|     with pytest.raises(ValueError):
 | |
|         doc.ents = list(doc.ents) + [new_entity]
 |