spaCy/spacy/tests/vocab_vectors/test_similarity.py
Ines Montani 75f3234404
💫 Refactor test suite (#2568)
## Description

Related issues: #2379 (should be fixed by separating model tests)

* **total execution time down from > 300 seconds to under 60 seconds** 🎉
* removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure
* changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version)
* merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways)
* tidied up and rewrote existing tests wherever possible

### Todo

- [ ] move tests to `/tests` and adjust CI commands accordingly
- [x] move model test suite from internal repo to `spacy-models`
- [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~
- [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted
- [ ] update documentation on how to run tests


### Types of change
enhancement, tests

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-24 23:38:44 +02:00

64 lines
2.0 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
import pytest
import numpy
from spacy.tokens import Doc
from ..util import get_cosine, add_vecs_to_vocab
@pytest.fixture
def vectors():
return [("apple", [1, 2, 3]), ("orange", [-1, -2, -3])]
@pytest.fixture()
def vocab(en_vocab, vectors):
add_vecs_to_vocab(en_vocab, vectors)
return en_vocab
def test_vectors_similarity_LL(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
lex1 = vocab[word1]
lex2 = vocab[word2]
assert lex1.has_vector
assert lex2.has_vector
assert lex1.vector_norm != 0
assert lex2.vector_norm != 0
assert lex1.vector[0] != lex2.vector[0] and lex1.vector[1] != lex2.vector[1]
assert numpy.isclose(lex1.similarity(lex2), get_cosine(vec1, vec2))
assert numpy.isclose(lex2.similarity(lex2), lex1.similarity(lex1))
def test_vectors_similarity_TT(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
assert doc[0].has_vector
assert doc[1].has_vector
assert doc[0].vector_norm != 0
assert doc[1].vector_norm != 0
assert doc[0].vector[0] != doc[1].vector[0] and doc[0].vector[1] != doc[1].vector[1]
assert numpy.isclose(doc[0].similarity(doc[1]), get_cosine(vec1, vec2))
assert numpy.isclose(doc[1].similarity(doc[0]), doc[0].similarity(doc[1]))
def test_vectors_similarity_TD(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
with pytest.warns(None):
assert doc.similarity(doc[0]) == doc[0].similarity(doc)
def test_vectors_similarity_DS(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
assert doc.similarity(doc[:2]) == doc[:2].similarity(doc)
def test_vectors_similarity_TS(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
with pytest.warns(None):
assert doc[:2].similarity(doc[0]) == doc[0].similarity(doc[:2])