mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			290 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			290 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //- 💫 DOCS > API > LEXEME
 | ||
| 
 | ||
| include ../../_includes/_mixins
 | ||
| 
 | ||
| p
 | ||
|     |  An entry in the vocabulary. A #[code Lexeme] has no string context – it's
 | ||
|     |  a word type, as opposed to a word token. It therefore has no
 | ||
|     |  part-of-speech tag, dependency parse, or lemma (if lemmatization depends
 | ||
|     |  on the part-of-speech tag).
 | ||
| 
 | ||
| +h(2, "init") Lexeme.__init__
 | ||
|     +tag method
 | ||
| 
 | ||
| p Create a #[code Lexeme] object.
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code vocab]
 | ||
|         +cell #[code Vocab]
 | ||
|         +cell The parent vocabulary.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code orth]
 | ||
|         +cell int
 | ||
|         +cell The orth id of the lexeme.
 | ||
| 
 | ||
|     +footrow
 | ||
|         +cell returns
 | ||
|         +cell #[code Lexeme]
 | ||
|         +cell The newly constructed object.
 | ||
| 
 | ||
| +h(2, "set_flag") Lexeme.set_flag
 | ||
|     +tag method
 | ||
| 
 | ||
| p Change the value of a boolean flag.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     COOL_FLAG = nlp.vocab.add_flag(lambda text: False)
 | ||
|     nlp.vocab[u'spaCy'].set_flag(COOL_FLAG, True)
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code flag_id]
 | ||
|         +cell int
 | ||
|         +cell The attribute ID of the flag to set.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code value]
 | ||
|         +cell bool
 | ||
|         +cell The new value of the flag.
 | ||
| 
 | ||
| +h(2, "check_flag") Lexeme.check_flag
 | ||
|     +tag method
 | ||
| 
 | ||
| p Check the value of a boolean flag.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     is_my_library = lambda text: text in ['spaCy', 'Thinc']
 | ||
|     MY_LIBRARY = nlp.vocab.add_flag(is_my_library)
 | ||
|     assert nlp.vocab[u'spaCy'].check_flag(MY_LIBRARY) == True
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code flag_id]
 | ||
|         +cell int
 | ||
|         +cell The attribute ID of the flag to query.
 | ||
| 
 | ||
|     +footrow
 | ||
|         +cell returns
 | ||
|         +cell bool
 | ||
|         +cell The value of the flag.
 | ||
| 
 | ||
| +h(2, "similarity") Lexeme.similarity
 | ||
|     +tag method
 | ||
|     +tag-model("vectors")
 | ||
| 
 | ||
| p Compute a semantic similarity estimate. Defaults to cosine over vectors.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     apple = nlp.vocab[u'apple']
 | ||
|     orange = nlp.vocab[u'orange']
 | ||
|     apple_orange = apple.similarity(orange)
 | ||
|     orange_apple = orange.similarity(apple)
 | ||
|     assert apple_orange == orange_apple
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell other
 | ||
|         +cell -
 | ||
|         +cell
 | ||
|             |  The object to compare with. By default, accepts #[code Doc],
 | ||
|             |  #[code Span], #[code Token] and #[code Lexeme] objects.
 | ||
| 
 | ||
|     +footrow
 | ||
|         +cell returns
 | ||
|         +cell float
 | ||
|         +cell A scalar similarity score. Higher is more similar.
 | ||
| 
 | ||
| 
 | ||
| +h(2, "has_vector") Lexeme.has_vector
 | ||
|     +tag property
 | ||
|     +tag-model("vectors")
 | ||
| 
 | ||
| p
 | ||
|     |  A boolean value indicating whether a word vector is associated with the
 | ||
|     |  lexeme.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     apple = nlp.vocab[u'apple']
 | ||
|     assert apple.has_vector
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +footrow
 | ||
|         +cell returns
 | ||
|         +cell bool
 | ||
|         +cell Whether the lexeme has a vector data attached.
 | ||
| 
 | ||
| +h(2, "vector") Lexeme.vector
 | ||
|     +tag property
 | ||
|     +tag-model("vectors")
 | ||
| 
 | ||
| p A real-valued meaning representation.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     apple = nlp.vocab[u'apple']
 | ||
|     assert apple.vector.dtype == 'float32'
 | ||
|     assert apple.vector.shape == (300,)
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +footrow
 | ||
|         +cell returns
 | ||
|         +cell #[code numpy.ndarray[ndim=1, dtype='float32']]
 | ||
|         +cell A 1D numpy array representing the lexeme's semantics.
 | ||
| 
 | ||
| +h(2, "vector_norm") Lexeme.vector_norm
 | ||
|     +tag property
 | ||
|     +tag-model("vectors")
 | ||
| 
 | ||
| p The L2 norm of the lexeme's vector representation.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     apple = nlp.vocab[u'apple']
 | ||
|     pasta = nlp.vocab[u'pasta']
 | ||
|     apple.vector_norm # 7.1346845626831055
 | ||
|     pasta.vector_norm # 7.759851932525635
 | ||
|     assert apple.vector_norm != pasta.vector_norm
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +footrow
 | ||
|         +cell returns
 | ||
|         +cell float
 | ||
|         +cell The L2 norm of the vector representation.
 | ||
| 
 | ||
| +h(2, "attributes") Attributes
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code vocab]
 | ||
|         +cell #[code Vocab]
 | ||
|         +cell
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code text]
 | ||
|         +cell unicode
 | ||
|         +cell Verbatim text content.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code lex_id]
 | ||
|         +cell int
 | ||
|         +cell ID of the lexeme's lexical type.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code lower]
 | ||
|         +cell int
 | ||
|         +cell Lower-case form of the word.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code lower_]
 | ||
|         +cell unicode
 | ||
|         +cell Lower-case form of the word.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code shape]
 | ||
|         +cell int
 | ||
|         +cell Transform of the word's string, to show orthographic features.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code shape_]
 | ||
|         +cell unicode
 | ||
|         +cell Transform of the word's string, to show orthographic features.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code prefix]
 | ||
|         +cell int
 | ||
|         +cell Length-N substring from the start of the word. Defaults to #[code N=1].
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code prefix_]
 | ||
|         +cell unicode
 | ||
|         +cell Length-N substring from the start of the word. Defaults to #[code N=1].
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code suffix]
 | ||
|         +cell int
 | ||
|         +cell Length-N substring from the end of the word. Defaults to #[code N=3].
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code suffix_]
 | ||
|         +cell unicode
 | ||
|         +cell Length-N substring from the start of the word. Defaults to #[code N=3].
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code is_alpha]
 | ||
|         +cell bool
 | ||
|         +cell Equivalent to #[code word.orth_.isalpha()].
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code is_ascii]
 | ||
|         +cell bool
 | ||
|         +cell Equivalent to #[code [any(ord(c) >= 128 for c in word.orth_)]].
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code is_digit]
 | ||
|         +cell bool
 | ||
|         +cell Equivalent to #[code word.orth_.isdigit()].
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code is_lower]
 | ||
|         +cell bool
 | ||
|         +cell Equivalent to #[code word.orth_.islower()].
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code is_title]
 | ||
|         +cell bool
 | ||
|         +cell Equivalent to #[code word.orth_.istitle()].
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code is_punct]
 | ||
|         +cell bool
 | ||
|         +cell Equivalent to #[code word.orth_.ispunct()].
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code is_space]
 | ||
|         +cell bool
 | ||
|         +cell Equivalent to #[code word.orth_.isspace()].
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code like_url]
 | ||
|         +cell bool
 | ||
|         +cell Does the word resemble a URL?
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code like_num]
 | ||
|         +cell bool
 | ||
|         +cell Does the word represent a number? e.g. “10.9”, “10”, “ten”, etc.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code like_email]
 | ||
|         +cell bool
 | ||
|         +cell Does the word resemble an email address?
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code is_oov]
 | ||
|         +cell bool
 | ||
|         +cell Is the word out-of-vocabulary?
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code is_stop]
 | ||
|         +cell bool
 | ||
|         +cell Is the word part of a "stop list"?
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code lang]
 | ||
|         +cell int
 | ||
|         +cell Language of the parent vocabulary.
 | ||
|     +row
 | ||
|         +cell #[code lang_]
 | ||
|         +cell unicode
 | ||
|         +cell Language of the parent vocabulary.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code prob]
 | ||
|         +cell float
 | ||
|         +cell Smoothed log probability estimate of lexeme's type.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code sentiment]
 | ||
|         +cell float
 | ||
|         +cell A scalar value indicating the positivity or negativity of the lexeme.
 |