mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
		
			
				
	
	
		
			111 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| from thinc.api import Model
 | |
| 
 | |
| from spacy import registry
 | |
| from spacy.pipeline._parser_internals.arc_eager import ArcEager
 | |
| from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
 | |
| from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
 | |
| from spacy.pipeline.transition_parser import Parser
 | |
| from spacy.tokens.doc import Doc
 | |
| from spacy.training import Example
 | |
| from spacy.vocab import Vocab
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def vocab():
 | |
|     return Vocab()
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def arc_eager(vocab):
 | |
|     actions = ArcEager.get_actions(left_labels=["L"], right_labels=["R"])
 | |
|     return ArcEager(vocab.strings, actions)
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def tok2vec():
 | |
|     cfg = {"model": DEFAULT_TOK2VEC_MODEL}
 | |
|     tok2vec = registry.resolve(cfg, validate=True)["model"]
 | |
|     tok2vec.initialize()
 | |
|     return tok2vec
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def parser(vocab, arc_eager):
 | |
|     config = {
 | |
|         "learn_tokens": False,
 | |
|         "min_action_freq": 30,
 | |
|         "update_with_oracle_cut_size": 100,
 | |
|     }
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     return Parser(vocab, model, moves=arc_eager, **config)
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def model(arc_eager, tok2vec, vocab):
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     model.attrs["resize_output"](model, arc_eager.n_moves)
 | |
|     model.initialize()
 | |
|     return model
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def doc(vocab):
 | |
|     return Doc(vocab, words=["a", "b", "c"])
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def gold(doc):
 | |
|     return {"heads": [1, 1, 1], "deps": ["L", "ROOT", "R"]}
 | |
| 
 | |
| 
 | |
| def test_can_init_nn_parser(parser):
 | |
|     assert isinstance(parser.model, Model)
 | |
| 
 | |
| 
 | |
| def test_build_model(parser, vocab):
 | |
|     config = {
 | |
|         "learn_tokens": False,
 | |
|         "min_action_freq": 0,
 | |
|         "update_with_oracle_cut_size": 100,
 | |
|     }
 | |
|     cfg = {"model": DEFAULT_PARSER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     parser.model = Parser(vocab, model=model, moves=parser.moves, **config).model
 | |
|     assert parser.model is not None
 | |
| 
 | |
| 
 | |
| def test_predict_doc(parser, tok2vec, model, doc):
 | |
|     doc.tensor = tok2vec.predict([doc])[0]
 | |
|     parser.model = model
 | |
|     parser(doc)
 | |
| 
 | |
| 
 | |
| def test_update_doc(parser, model, doc, gold):
 | |
|     parser.model = model
 | |
| 
 | |
|     def optimize(key, weights, gradient):
 | |
|         weights -= 0.001 * gradient
 | |
|         return weights, gradient
 | |
| 
 | |
|     example = Example.from_dict(doc, gold)
 | |
|     parser.update([example], sgd=optimize)
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(reason="No longer supported")
 | |
| def test_predict_doc_beam(parser, model, doc):
 | |
|     parser.model = model
 | |
|     parser(doc, beam_width=32, beam_density=0.001)
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(reason="No longer supported")
 | |
| def test_update_doc_beam(parser, model, doc, gold):
 | |
|     parser.model = model
 | |
| 
 | |
|     def optimize(weights, gradient, key=None):
 | |
|         weights -= 0.001 * gradient
 | |
| 
 | |
|     parser.update_beam((doc, gold), sgd=optimize)
 |