spaCy/spacy/_ml.py
2017-10-04 14:55:15 +02:00

681 lines
21 KiB
Python

import ujson
from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu, SELU
from thinc.i2v import HashEmbed, StaticVectors
from thinc.t2t import ExtractWindow, ParametricAttention
from thinc.t2v import Pooling, max_pool, mean_pool, sum_pool
from thinc.misc import Residual
from thinc.misc import BatchNorm as BN
from thinc.misc import LayerNorm as LN
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
from thinc.api import FeatureExtracter, with_getitem
from thinc.api import uniqued, wrap, flatten_add_lengths, noop
from thinc.linear.linear import LinearModel
from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module
import random
import cytoolz
from thinc import describe
from thinc.describe import Dimension, Synapses, Biases, Gradient
from thinc.neural._classes.affine import _set_dimensions_if_needed
import thinc.extra.load_nlp
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP, CLUSTER
from .tokens.doc import Doc
from . import util
import numpy
import io
# TODO: Unset this once we don't want to support models previous models.
#import thinc.neural._classes.layernorm
#thinc.neural._classes.layernorm.set_compat_six_eight(True)
VECTORS_KEY = 'spacy_pretrained_vectors'
@layerize
def _flatten_add_lengths(seqs, pad=0, drop=0.):
ops = Model.ops
lengths = ops.asarray([len(seq) for seq in seqs], dtype='i')
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths, pad=pad)
X = ops.flatten(seqs, pad=pad)
return (X, lengths), finish_update
@layerize
def _logistic(X, drop=0.):
xp = get_array_module(X)
if not isinstance(X, xp.ndarray):
X = xp.asarray(X)
# Clip to range (-10, 10)
X = xp.minimum(X, 10., X)
X = xp.maximum(X, -10., X)
Y = 1. / (1. + xp.exp(-X))
def logistic_bwd(dY, sgd=None):
dX = dY * (Y * (1-Y))
return dX
return Y, logistic_bwd
@layerize
def add_tuples(X, drop=0.):
"""Give inputs of sequence pairs, where each sequence is (vals, length),
sum the values, returning a single sequence.
If input is:
((vals1, length), (vals2, length)
Output is:
(vals1+vals2, length)
vals are a single tensor for the whole batch.
"""
(vals1, length1), (vals2, length2) = X
assert length1 == length2
def add_tuples_bwd(dY, sgd=None):
return (dY, dY)
return (vals1+vals2, length), add_tuples_bwd
def _zero_init(model):
def _zero_init_impl(self, X, y):
self.W.fill(0)
model.on_data_hooks.append(_zero_init_impl)
if model.W is not None:
model.W.fill(0.)
return model
@layerize
def _preprocess_doc(docs, drop=0.):
keys = [doc.to_array([LOWER]) for doc in docs]
keys = [a[:, 0] for a in keys]
ops = Model.ops
lengths = ops.asarray([arr.shape[0] for arr in keys])
keys = ops.xp.concatenate(keys)
vals = ops.allocate(keys.shape[0]) + 1
return (keys, vals, lengths), None
def _init_for_precomputed(W, ops):
if (W**2).sum() != 0.:
return
reshaped = W.reshape((W.shape[1], W.shape[0] * W.shape[2]))
ops.xavier_uniform_init(reshaped)
W[:] = reshaped.reshape(W.shape)
@describe.on_data(_set_dimensions_if_needed)
@describe.attributes(
nI=Dimension("Input size"),
nF=Dimension("Number of features"),
nO=Dimension("Output size"),
W=Synapses("Weights matrix",
lambda obj: (obj.nF, obj.nO, obj.nI),
lambda W, ops: _init_for_precomputed(W, ops)),
b=Biases("Bias vector",
lambda obj: (obj.nO,)),
d_W=Gradient("W"),
d_b=Gradient("b")
)
class PrecomputableAffine(Model):
def __init__(self, nO=None, nI=None, nF=None, **kwargs):
Model.__init__(self, **kwargs)
self.nO = nO
self.nI = nI
self.nF = nF
def begin_update(self, X, drop=0.):
# X: (b, i)
# Yf: (b, f, i)
# dY: (b, o)
# dYf: (b, f, o)
#Yf = numpy.einsum('bi,foi->bfo', X, self.W)
Yf = self.ops.xp.tensordot(
X, self.W, axes=[[1], [2]])
Yf += self.b
def backward(dY_ids, sgd=None):
tensordot = self.ops.xp.tensordot
dY, ids = dY_ids
Xf = X[ids]
#dXf = numpy.einsum('bo,foi->bfi', dY, self.W)
dXf = tensordot(dY, self.W, axes=[[1], [1]])
#dW = numpy.einsum('bo,bfi->ofi', dY, Xf)
dW = tensordot(dY, Xf, axes=[[0], [0]])
# ofi -> foi
self.d_W += dW.transpose((1, 0, 2))
self.d_b += dY.sum(axis=0)
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return dXf
return Yf, backward
@describe.on_data(_set_dimensions_if_needed)
@describe.attributes(
nI=Dimension("Input size"),
nF=Dimension("Number of features"),
nP=Dimension("Number of pieces"),
nO=Dimension("Output size"),
W=Synapses("Weights matrix",
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI),
lambda W, ops: ops.xavier_uniform_init(W)),
b=Biases("Bias vector",
lambda obj: (obj.nO, obj.nP)),
d_W=Gradient("W"),
d_b=Gradient("b")
)
class PrecomputableMaxouts(Model):
def __init__(self, nO=None, nI=None, nF=None, nP=3, **kwargs):
Model.__init__(self, **kwargs)
self.nO = nO
self.nP = nP
self.nI = nI
self.nF = nF
def begin_update(self, X, drop=0.):
# X: (b, i)
# Yfp: (b, f, o, p)
# Xf: (f, b, i)
# dYp: (b, o, p)
# W: (f, o, p, i)
# b: (o, p)
# bi,opfi->bfop
# bop,fopi->bfi
# bop,fbi->opfi : fopi
tensordot = self.ops.xp.tensordot
ascontiguous = self.ops.xp.ascontiguousarray
Yfp = tensordot(X, self.W, axes=[[1], [3]])
Yfp += self.b
def backward(dYp_ids, sgd=None):
dYp, ids = dYp_ids
Xf = X[ids]
dXf = tensordot(dYp, self.W, axes=[[1, 2], [1,2]])
dW = tensordot(dYp, Xf, axes=[[0], [0]])
self.d_W += dW.transpose((2, 0, 1, 3))
self.d_b += dYp.sum(axis=0)
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return dXf
return Yfp, backward
def drop_layer(layer, factor=2.):
def drop_layer_fwd(X, drop=0.):
if drop <= 0.:
return layer.begin_update(X, drop=drop)
else:
coinflip = layer.ops.xp.random.random()
if (coinflip / factor) >= drop:
return layer.begin_update(X, drop=drop)
else:
return X, lambda dX, sgd=None: dX
model = wrap(drop_layer_fwd, layer)
model.predict = layer
return model
def link_vectors_to_models(vocab):
vectors = vocab.vectors
ops = Model.ops
for word in vocab:
if word.orth in vectors.key2row:
word.rank = vectors.key2row[word.orth]
else:
word.rank = 0
data = ops.asarray(vectors.data)
# Set an entry here, so that vectors are accessed by StaticVectors
# (unideal, I know)
thinc.extra.load_nlp.VECTORS[(ops.device, VECTORS_KEY)] = data
def Tok2Vec(width, embed_size, **kwargs):
pretrained_dims = kwargs.get('pretrained_dims', 0)
cnn_maxout_pieces = kwargs.get('cnn_maxout_pieces', 3)
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add,
'*': reapply}):
norm = HashEmbed(width, embed_size, column=cols.index(NORM), name='embed_norm')
prefix = HashEmbed(width, embed_size//2, column=cols.index(PREFIX), name='embed_prefix')
suffix = HashEmbed(width, embed_size//2, column=cols.index(SUFFIX), name='embed_suffix')
shape = HashEmbed(width, embed_size//2, column=cols.index(SHAPE), name='embed_shape')
if pretrained_dims is not None and pretrained_dims >= 1:
glove = StaticVectors(VECTORS_KEY, width, column=cols.index(ID))
embed = uniqued(
(glove | norm | prefix | suffix | shape)
>> LN(Maxout(width, width*5, pieces=3)), column=5)
else:
embed = uniqued(
(norm | prefix | suffix | shape)
>> LN(Maxout(width, width*4, pieces=3)), column=5)
convolution = Residual(
ExtractWindow(nW=1)
>> LN(Maxout(width, width*3, pieces=cnn_maxout_pieces))
)
tok2vec = (
FeatureExtracter(cols)
>> with_flatten(
embed >> (convolution ** 4), pad=4)
)
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
tok2vec.nO = width
tok2vec.embed = embed
return tok2vec
def reapply(layer, n_times):
def reapply_fwd(X, drop=0.):
backprops = []
for i in range(n_times):
Y, backprop = layer.begin_update(X, drop=drop)
X = Y
backprops.append(backprop)
def reapply_bwd(dY, sgd=None):
dX = None
for backprop in reversed(backprops):
dY = backprop(dY, sgd=sgd)
if dX is None:
dX = dY
else:
dX += dY
return dX
return Y, reapply_bwd
return wrap(reapply_fwd, layer)
def asarray(ops, dtype):
def forward(X, drop=0.):
return ops.asarray(X, dtype=dtype), None
return layerize(forward)
def foreach(layer):
def forward(Xs, drop=0.):
results = []
backprops = []
for X in Xs:
result, bp = layer.begin_update(X, drop=drop)
results.append(result)
backprops.append(bp)
def backward(d_results, sgd=None):
dXs = []
for d_result, backprop in zip(d_results, backprops):
dXs.append(backprop(d_result, sgd))
return dXs
return results, backward
model = layerize(forward)
model._layers.append(layer)
return model
def rebatch(size, layer):
ops = layer.ops
def forward(X, drop=0.):
if X.shape[0] < size:
return layer.begin_update(X)
parts = _divide_array(X, size)
results, bp_results = zip(*[layer.begin_update(p, drop=drop)
for p in parts])
y = ops.flatten(results)
def backward(dy, sgd=None):
d_parts = [bp(y, sgd=sgd) for bp, y in
zip(bp_results, _divide_array(dy, size))]
try:
dX = ops.flatten(d_parts)
except TypeError:
dX = None
except ValueError:
dX = None
return dX
return y, backward
model = layerize(forward)
model._layers.append(layer)
return model
def _divide_array(X, size):
parts = []
index = 0
while index < len(X):
parts.append(X[index : index + size])
index += size
return parts
def get_col(idx):
assert idx >= 0, idx
def forward(X, drop=0.):
assert idx >= 0, idx
if isinstance(X, numpy.ndarray):
ops = NumpyOps()
else:
ops = CupyOps()
output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype)
def backward(y, sgd=None):
assert idx >= 0, idx
dX = ops.allocate(X.shape)
dX[:, idx] += y
return dX
return output, backward
return layerize(forward)
def zero_init(model):
def _hook(self, X, y=None):
self.W.fill(0)
model.on_data_hooks.append(_hook)
return model
def doc2feats(cols=None):
if cols is None:
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
def forward(docs, drop=0.):
feats = []
for doc in docs:
feats.append(doc.to_array(cols))
return feats, None
model = layerize(forward)
model.cols = cols
return model
def print_shape(prefix):
def forward(X, drop=0.):
return X, lambda dX, **kwargs: dX
return layerize(forward)
@layerize
def get_token_vectors(tokens_attrs_vectors, drop=0.):
ops = Model.ops
tokens, attrs, vectors = tokens_attrs_vectors
def backward(d_output, sgd=None):
return (tokens, d_output)
return vectors, backward
def fine_tune(embedding, combine=None):
if combine is not None:
raise NotImplementedError(
"fine_tune currently only supports addition. Set combine=None")
def fine_tune_fwd(docs_tokvecs, drop=0.):
docs, tokvecs = docs_tokvecs
lengths = model.ops.asarray([len(doc) for doc in docs], dtype='i')
vecs, bp_vecs = embedding.begin_update(docs, drop=drop)
flat_tokvecs = embedding.ops.flatten(tokvecs)
flat_vecs = embedding.ops.flatten(vecs)
output = embedding.ops.unflatten(
(model.mix[0] * flat_tokvecs + model.mix[1] * flat_vecs), lengths)
def fine_tune_bwd(d_output, sgd=None):
flat_grad = model.ops.flatten(d_output)
model.d_mix[0] += flat_tokvecs.dot(flat_grad.T).sum()
model.d_mix[1] += flat_vecs.dot(flat_grad.T).sum()
bp_vecs([d_o * model.mix[1] for d_o in d_output], sgd=sgd)
if sgd is not None:
sgd(model._mem.weights, model._mem.gradient, key=model.id)
return [d_o * model.mix[0] for d_o in d_output]
return output, fine_tune_bwd
def fine_tune_predict(docs_tokvecs):
docs, tokvecs = docs_tokvecs
vecs = embedding(docs)
return [model.mix[0]*tv+model.mix[1]*v
for tv, v in zip(tokvecs, vecs)]
model = wrap(fine_tune_fwd, embedding)
model.mix = model._mem.add((model.id, 'mix'), (2,))
model.mix.fill(0.5)
model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix'))
model.predict = fine_tune_predict
return model
@layerize
def flatten(seqs, drop=0.):
if isinstance(seqs[0], numpy.ndarray):
ops = NumpyOps()
elif hasattr(CupyOps.xp, 'ndarray') and isinstance(seqs[0], CupyOps.xp.ndarray):
ops = CupyOps()
else:
raise ValueError("Unable to flatten sequence of type %s" % type(seqs[0]))
lengths = [len(seq) for seq in seqs]
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths)
X = ops.xp.vstack(seqs)
return X, finish_update
@layerize
def logistic(X, drop=0.):
xp = get_array_module(X)
if not isinstance(X, xp.ndarray):
X = xp.asarray(X)
# Clip to range (-10, 10)
X = xp.minimum(X, 10., X)
X = xp.maximum(X, -10., X)
Y = 1. / (1. + xp.exp(-X))
def logistic_bwd(dY, sgd=None):
dX = dY * (Y * (1-Y))
return dX
return Y, logistic_bwd
def zero_init(model):
def _zero_init_impl(self, X, y):
self.W.fill(0)
model.on_data_hooks.append(_zero_init_impl)
return model
@layerize
def preprocess_doc(docs, drop=0.):
keys = [doc.to_array([LOWER]) for doc in docs]
keys = [a[:, 0] for a in keys]
ops = Model.ops
lengths = ops.asarray([arr.shape[0] for arr in keys])
keys = ops.xp.concatenate(keys)
vals = ops.allocate(keys.shape[0]) + 1
return (keys, vals, lengths), None
def getitem(i):
def getitem_fwd(X, drop=0.):
return X[i], None
return layerize(getitem_fwd)
def build_tagger_model(nr_class, **cfg):
embed_size = util.env_opt('embed_size', 7000)
if 'token_vector_width' in cfg:
token_vector_width = cfg['token_vector_width']
else:
token_vector_width = util.env_opt('token_vector_width', 128)
pretrained_dims = cfg.get('pretrained_dims', 0)
with Model.define_operators({'>>': chain, '+': add}):
if 'tok2vec' in cfg:
tok2vec = cfg['tok2vec']
else:
tok2vec = Tok2Vec(token_vector_width, embed_size,
pretrained_dims=pretrained_dims)
model = (
tok2vec
>> with_flatten(Softmax(nr_class, token_vector_width))
)
model.nI = None
model.tok2vec = tok2vec
return model
@layerize
def SpacyVectors(docs, drop=0.):
xp = get_array_module(docs[0].vocab.vectors.data)
width = docs[0].vocab.vectors.data.shape[1]
batch = []
for doc in docs:
indices = numpy.zeros((len(doc),), dtype='i')
for i, word in enumerate(doc):
if word.orth in doc.vocab.vectors.key2row:
indices[i] = doc.vocab.vectors.key2row[word.orth]
else:
indices[i] = 0
vectors = doc.vocab.vectors.data[indices]
batch.append(vectors)
return batch, None
def foreach(layer, drop_factor=1.0):
'''Map a layer across elements in a list'''
def foreach_fwd(Xs, drop=0.):
drop *= drop_factor
ys = []
backprops = []
for X in Xs:
y, bp_y = layer.begin_update(X, drop=drop)
ys.append(y)
backprops.append(bp_y)
def foreach_bwd(d_ys, sgd=None):
d_Xs = []
for d_y, bp_y in zip(d_ys, backprops):
if bp_y is not None and bp_y is not None:
d_Xs.append(d_y, sgd=sgd)
else:
d_Xs.append(None)
return d_Xs
return ys, foreach_bwd
model = wrap(foreach_fwd, layer)
return model
def build_text_classifier(nr_class, width=64, **cfg):
nr_vector = cfg.get('nr_vector', 5000)
pretrained_dims = cfg.get('pretrained_dims', 0)
with Model.define_operators({'>>': chain, '+': add, '|': concatenate,
'**': clone}):
if cfg.get('low_data'):
model = (
SpacyVectors
>> flatten_add_lengths
>> with_getitem(0,
Affine(width, pretrained_dims)
)
>> ParametricAttention(width)
>> Pooling(sum_pool)
>> Residual(ReLu(width, width)) ** 2
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
>> logistic
)
return model
lower = HashEmbed(width, nr_vector, column=1)
prefix = HashEmbed(width//2, nr_vector, column=2)
suffix = HashEmbed(width//2, nr_vector, column=3)
shape = HashEmbed(width//2, nr_vector, column=4)
trained_vectors = (
FeatureExtracter([ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID])
>> with_flatten(
uniqued(
(lower | prefix | suffix | shape)
>> LN(Maxout(width, width+(width//2)*3)),
column=0
)
)
)
if pretrained_dims:
static_vectors = (
SpacyVectors
>> with_flatten(Affine(width, pretrained_dims))
)
# TODO Make concatenate support lists
vectors = concatenate_lists(trained_vectors, static_vectors)
vectors_width = width*2
else:
vectors = trained_vectors
vectors_width = width
static_vectors = None
cnn_model = (
vectors
>> with_flatten(
LN(Maxout(width, vectors_width))
>> Residual(
(ExtractWindow(nW=1) >> zero_init(Maxout(width, width*3)))
) ** 2, pad=2
)
>> flatten_add_lengths
>> ParametricAttention(width)
>> Pooling(sum_pool)
>> Residual(zero_init(Maxout(width, width)))
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
)
linear_model = (
_preprocess_doc
>> LinearModel(nr_class, drop_factor=0.)
)
model = (
(linear_model | cnn_model)
>> zero_init(Affine(nr_class, nr_class*2, drop_factor=0.0))
>> logistic
)
model.lsuv = False
return model
@layerize
def flatten(seqs, drop=0.):
ops = Model.ops
lengths = ops.asarray([len(seq) for seq in seqs], dtype='i')
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths, pad=0)
X = ops.flatten(seqs, pad=0)
return X, finish_update
def concatenate_lists(*layers, **kwargs): # pragma: no cover
'''Compose two or more models `f`, `g`, etc, such that their outputs are
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
'''
if not layers:
return noop()
drop_factor = kwargs.get('drop_factor', 1.0)
ops = layers[0].ops
layers = [chain(layer, flatten) for layer in layers]
concat = concatenate(*layers)
def concatenate_lists_fwd(Xs, drop=0.):
drop *= drop_factor
lengths = ops.asarray([len(X) for X in Xs], dtype='i')
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
ys = ops.unflatten(flat_y, lengths)
def concatenate_lists_bwd(d_ys, sgd=None):
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
return ys, concatenate_lists_bwd
model = wrap(concatenate_lists_fwd, concat)
return model