mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
183 lines
6.7 KiB
Python
183 lines
6.7 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
import re
|
|
import bz2
|
|
import csv
|
|
import datetime
|
|
|
|
"""
|
|
Process a Wikipedia dump to calculate entity frequencies and prior probabilities in combination with certain mentions.
|
|
Write these results to file for downstream KB and training data generation.
|
|
"""
|
|
|
|
map_alias_to_link = dict()
|
|
|
|
# these will/should be matched ignoring case
|
|
wiki_namespaces = ["b", "betawikiversity", "Book", "c", "Category", "Commons",
|
|
"d", "dbdump", "download", "Draft", "Education", "Foundation",
|
|
"Gadget", "Gadget definition", "gerrit", "File", "Help", "Image", "Incubator",
|
|
"m", "mail", "mailarchive", "media", "MediaWiki", "MediaWiki talk", "Mediawikiwiki",
|
|
"MediaZilla", "Meta", "Metawikipedia", "Module",
|
|
"mw", "n", "nost", "oldwikisource", "outreach", "outreachwiki", "otrs", "OTRSwiki",
|
|
"Portal", "phab", "Phabricator", "Project", "q", "quality", "rev",
|
|
"s", "spcom", "Special", "species", "Strategy", "sulutil", "svn",
|
|
"Talk", "Template", "Template talk", "Testwiki", "ticket", "TimedText", "Toollabs", "tools",
|
|
"tswiki", "User", "User talk", "v", "voy",
|
|
"w", "Wikibooks", "Wikidata", "wikiHow", "Wikinvest", "wikilivres", "Wikimedia", "Wikinews",
|
|
"Wikipedia", "Wikipedia talk", "Wikiquote", "Wikisource", "Wikispecies", "Wikitech",
|
|
"Wikiversity", "Wikivoyage", "wikt", "wiktionary", "wmf", "wmania", "WP"]
|
|
|
|
# find the links
|
|
link_regex = re.compile(r'\[\[[^\[\]]*\]\]')
|
|
|
|
# match on interwiki links, e.g. `en:` or `:fr:`
|
|
ns_regex = r":?" + "[a-z][a-z]" + ":"
|
|
|
|
# match on Namespace: optionally preceded by a :
|
|
for ns in wiki_namespaces:
|
|
ns_regex += "|" + ":?" + ns + ":"
|
|
|
|
ns_regex = re.compile(ns_regex, re.IGNORECASE)
|
|
|
|
|
|
def read_wikipedia_prior_probs(wikipedia_input, prior_prob_output):
|
|
"""
|
|
Read the XML wikipedia data and parse out intra-wiki links to estimate prior probabilities.
|
|
The full file takes about 2h to parse 1100M lines.
|
|
It works relatively fast because it runs line by line, irrelevant of which article the intrawiki is from.
|
|
"""
|
|
with bz2.open(wikipedia_input, mode='rb') as file:
|
|
line = file.readline()
|
|
cnt = 0
|
|
while line:
|
|
if cnt % 5000000 == 0:
|
|
print(datetime.datetime.now(), "processed", cnt, "lines of Wikipedia dump")
|
|
clean_line = line.strip().decode("utf-8")
|
|
|
|
aliases, entities, normalizations = get_wp_links(clean_line)
|
|
for alias, entity, norm in zip(aliases, entities, normalizations):
|
|
_store_alias(alias, entity, normalize_alias=norm, normalize_entity=True)
|
|
_store_alias(alias, entity, normalize_alias=norm, normalize_entity=True)
|
|
|
|
line = file.readline()
|
|
cnt += 1
|
|
|
|
# write all aliases and their entities and count occurrences to file
|
|
with open(prior_prob_output, mode='w', encoding='utf8') as outputfile:
|
|
outputfile.write("alias" + "|" + "count" + "|" + "entity" + "\n")
|
|
for alias, alias_dict in sorted(map_alias_to_link.items(), key=lambda x: x[0]):
|
|
for entity, count in sorted(alias_dict.items(), key=lambda x: x[1], reverse=True):
|
|
outputfile.write(alias + "|" + str(count) + "|" + entity + "\n")
|
|
|
|
|
|
def _store_alias(alias, entity, normalize_alias=False, normalize_entity=True):
|
|
alias = alias.strip()
|
|
entity = entity.strip()
|
|
|
|
# remove everything after # as this is not part of the title but refers to a specific paragraph
|
|
if normalize_entity:
|
|
# wikipedia titles are always capitalized
|
|
entity = _capitalize_first(entity.split("#")[0])
|
|
if normalize_alias:
|
|
alias = alias.split("#")[0]
|
|
|
|
if alias and entity:
|
|
alias_dict = map_alias_to_link.get(alias, dict())
|
|
entity_count = alias_dict.get(entity, 0)
|
|
alias_dict[entity] = entity_count + 1
|
|
map_alias_to_link[alias] = alias_dict
|
|
|
|
|
|
def get_wp_links(text):
|
|
aliases = []
|
|
entities = []
|
|
normalizations = []
|
|
|
|
matches = link_regex.findall(text)
|
|
for match in matches:
|
|
match = match[2:][:-2].replace("_", " ").strip()
|
|
|
|
if ns_regex.match(match):
|
|
pass # ignore namespaces at the beginning of the string
|
|
|
|
# this is a simple [[link]], with the alias the same as the mention
|
|
elif "|" not in match:
|
|
aliases.append(match)
|
|
entities.append(match)
|
|
normalizations.append(True)
|
|
|
|
# in wiki format, the link is written as [[entity|alias]]
|
|
else:
|
|
splits = match.split("|")
|
|
entity = splits[0].strip()
|
|
alias = splits[1].strip()
|
|
# specific wiki format [[alias (specification)|]]
|
|
if len(alias) == 0 and "(" in entity:
|
|
alias = entity.split("(")[0]
|
|
aliases.append(alias)
|
|
entities.append(entity)
|
|
normalizations.append(False)
|
|
else:
|
|
aliases.append(alias)
|
|
entities.append(entity)
|
|
normalizations.append(False)
|
|
|
|
return aliases, entities, normalizations
|
|
|
|
|
|
def _capitalize_first(text):
|
|
if not text:
|
|
return None
|
|
result = text[0].capitalize()
|
|
if len(result) > 0:
|
|
result += text[1:]
|
|
return result
|
|
|
|
|
|
def write_entity_counts(prior_prob_input, count_output, to_print=False):
|
|
# Write entity counts for quick access later
|
|
entity_to_count = dict()
|
|
total_count = 0
|
|
|
|
with open(prior_prob_input, mode='r', encoding='utf8') as prior_file:
|
|
# skip header
|
|
prior_file.readline()
|
|
line = prior_file.readline()
|
|
|
|
while line:
|
|
splits = line.replace('\n', "").split(sep='|')
|
|
# alias = splits[0]
|
|
count = int(splits[1])
|
|
entity = splits[2]
|
|
|
|
current_count = entity_to_count.get(entity, 0)
|
|
entity_to_count[entity] = current_count + count
|
|
|
|
total_count += count
|
|
|
|
line = prior_file.readline()
|
|
|
|
with open(count_output, mode='w', encoding='utf8') as entity_file:
|
|
entity_file.write("entity" + "|" + "count" + "\n")
|
|
for entity, count in entity_to_count.items():
|
|
entity_file.write(entity + "|" + str(count) + "\n")
|
|
|
|
if to_print:
|
|
for entity, count in entity_to_count.items():
|
|
print("Entity count:", entity, count)
|
|
print("Total count:", total_count)
|
|
|
|
|
|
def get_all_frequencies(count_input):
|
|
entity_to_count = dict()
|
|
with open(count_input, 'r', encoding='utf8') as csvfile:
|
|
csvreader = csv.reader(csvfile, delimiter='|')
|
|
# skip header
|
|
next(csvreader)
|
|
for row in csvreader:
|
|
entity_to_count[row[0]] = int(row[1])
|
|
|
|
return entity_to_count
|
|
|