spaCy/spacy/en.pyx
2014-12-20 03:49:58 +11:00

214 lines
6.2 KiB
Cython

# cython: profile=True
# cython: embedsignature=True
'''Tokenize English text, using a scheme that differs from the Penn Treebank 3
scheme in several important respects:
* Whitespace is added as tokens, except for single spaces. e.g.,
>>> [w.string for w in EN.tokenize(u'\\nHello \\tThere')]
[u'\\n', u'Hello', u' ', u'\\t', u'There']
* Contractions are normalized, e.g.
>>> [w.string for w in EN.tokenize(u"isn't ain't won't he's")]
[u'is', u'not', u'are', u'not', u'will', u'not', u'he', u"__s"]
* Hyphenated words are split, with the hyphen preserved, e.g.:
>>> [w.string for w in EN.tokenize(u'New York-based')]
[u'New', u'York', u'-', u'based']
Other improvements:
* Email addresses, URLs, European-formatted dates and other numeric entities not
found in the PTB are tokenized correctly
* Heuristic handling of word-final periods (PTB expects sentence boundary detection
as a pre-process before tokenization.)
Take care to ensure your training and run-time data is tokenized according to the
same scheme. Tokenization problems are a major cause of poor performance for
NLP tools. If you're using a pre-trained model, the :py:mod:`spacy.ptb3` module
provides a fully Penn Treebank 3-compliant tokenizer.
'''
from __future__ import unicode_literals
from murmurhash.mrmr cimport hash64
cimport lang
from .typedefs cimport hash_t, id_t, flags_t
import orth
from .morphology cimport NO_TAG, ADJ, ADV, ADP, CONJ, DET, NOUN, NUM, PRON, PRT, VERB
from .morphology cimport X, PUNCT, EOL
from .tokens cimport Morphology
DEF USE_POS_CACHE = True
POS_TAGS = {
'NULL': (NO_TAG, {}),
'EOL': (EOL, {}),
'CC': (CONJ, {}),
'CD': (NUM, {}),
'DT': (DET, {}),
'EX': (DET, {}),
'FW': (X, {}),
'IN': (ADP, {}),
'JJ': (ADJ, {}),
'JJR': (ADJ, {'misc': COMPARATIVE}),
'JJS': (ADJ, {'misc': SUPERLATIVE}),
'LS': (X, {}),
'MD': (VERB, {'tenspect': MODAL}),
'NN': (NOUN, {}),
'NNS': (NOUN, {'number': PLURAL}),
'NNP': (NOUN, {'misc': NAME}),
'NNPS': (NOUN, {'misc': NAME, 'number': PLURAL}),
'PDT': (DET, {}),
'POS': (PRT, {'case': GENITIVE}),
'PRP': (NOUN, {}),
'PRP$': (NOUN, {'case': GENITIVE}),
'RB': (ADV, {}),
'RBR': (ADV, {'misc': COMPARATIVE}),
'RBS': (ADV, {'misc': SUPERLATIVE}),
'RP': (PRT, {}),
'SYM': (X, {}),
'TO': (PRT, {}),
'UH': (X, {}),
'VB': (VERB, {}),
'VBD': (VERB, {'tenspect': PAST}),
'VBG': (VERB, {'tenspect': ING}),
'VBN': (VERB, {'tenspect': PASSIVE}),
'VBP': (VERB, {'tenspect': PRESENT}),
'VBZ': (VERB, {'tenspect': PRESENT, 'person': THIRD}),
'WDT': (DET, {'misc': RELATIVE}),
'WP': (PRON, {'misc': RELATIVE}),
'WP$': (PRON, {'misc': RELATIVE, 'case': GENITIVE}),
'WRB': (ADV, {'misc': RELATIVE}),
'!': (PUNCT, {}),
'#': (PUNCT, {}),
'$': (PUNCT, {}),
"''": (PUNCT, {}),
"(": (PUNCT, {}),
")": (PUNCT, {}),
"-LRB-": (PUNCT, {}),
"-RRB-": (PUNCT, {}),
".": (PUNCT, {}),
",": (PUNCT, {}),
"``": (PUNCT, {}),
":": (PUNCT, {}),
"?": (PUNCT, {}),
}
POS_TEMPLATES = (
(W_sic,),
(P1_lemma, P1_pos),
(P2_lemma, P2_pos),
(N1_sic,),
(N2_sic,),
(W_suffix,),
(W_prefix,),
(P1_pos,),
(P2_pos,),
(P1_pos, P2_pos),
(P1_pos, W_sic),
(P1_suffix,),
(N1_suffix,),
(W_shape,),
(W_cluster,),
(N1_cluster,),
(N2_cluster,),
(P1_cluster,),
(P2_cluster,),
(W_pos_type,),
(N1_pos_type,),
(N1_pos_type,),
(P1_pos, W_pos_type, N1_pos_type),
)
cdef class English(Language):
"""English tokenizer, tightly coupled to lexicon.
Attributes:
name (unicode): The two letter code used by Wikipedia for the language.
lexicon (Lexicon): The lexicon. Exposes the lookup method.
"""
def get_props(self, unicode string):
return {'flags': self.set_flags(string), 'dense': orth.word_shape(string)}
def set_flags(self, unicode string):
cdef flags_t flags = 0
flags |= orth.is_alpha(string) << IS_ALPHA
flags |= orth.is_ascii(string) << IS_ASCII
flags |= orth.is_digit(string) << IS_DIGIT
flags |= orth.is_lower(string) << IS_LOWER
flags |= orth.is_punct(string) << IS_PUNCT
flags |= orth.is_space(string) << IS_SPACE
flags |= orth.is_title(string) << IS_TITLE
flags |= orth.is_upper(string) << IS_UPPER
flags |= orth.like_url(string) << LIKE_URL
flags |= orth.like_number(string) << LIKE_NUMBER
return flags
def set_pos(self, Tokens tokens):
cdef int i
cdef atom_t[N_CONTEXT_FIELDS] context
cdef TokenC* t = tokens.data
cdef id_t[2] bigram
cdef hash_t cache_key
cdef void* cached = NULL
assert self.morphologizer is not None
cdef dict tagdict = self.pos_tagger.tagdict
for i in range(tokens.length):
fill_pos_context(context, i, t)
t[i].pos = self.pos_tagger.predict(context)
self.morphologizer.set_morph(i, t)
def train_pos(self, Tokens tokens, golds):
cdef int i
cdef atom_t[N_CONTEXT_FIELDS] context
c = 0
cdef TokenC* t = tokens.data
for i in range(tokens.length):
fill_pos_context(context, i, t)
t[i].pos = self.pos_tagger.predict(context, [golds[i]])
self.morphologizer.set_morph(i, t)
c += t[i].pos == golds[i]
return c
cdef int is_base_np_end(self, const TokenC* token) except -1:
pass
cdef int is_outside_base_np(self, const TokenC* token) except -1:
pass
cdef int fill_pos_context(atom_t* context, const int i, const TokenC* tokens) except -1:
_fill_from_token(&context[P2_sic], &tokens[i-2])
_fill_from_token(&context[P1_sic], &tokens[i-1])
_fill_from_token(&context[W_sic], &tokens[i])
_fill_from_token(&context[N1_sic], &tokens[i+1])
_fill_from_token(&context[N2_sic], &tokens[i+2])
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
context[0] = t.lex.sic
context[1] = t.lex.cluster
context[2] = t.lex.shape
context[3] = t.lex.prefix
context[4] = t.lex.suffix
context[5] = t.pos
context[6] = t.lemma
context[7] = t.lex.pos_type
EN = English('en')