mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
173 lines
6.1 KiB
Cython
173 lines
6.1 KiB
Cython
# cython: profile=True
|
|
# cython: embedsignature=True
|
|
'''Tokenize English text, using a scheme that differs from the Penn Treebank 3
|
|
scheme in several important respects:
|
|
|
|
* Whitespace is added as tokens, except for single spaces. e.g.,
|
|
|
|
>>> [w.string for w in EN.tokenize(u'\\nHello \\tThere')]
|
|
[u'\\n', u'Hello', u' ', u'\\t', u'There']
|
|
|
|
* Contractions are normalized, e.g.
|
|
|
|
>>> [w.string for w in EN.tokenize(u"isn't ain't won't he's")]
|
|
[u'is', u'not', u'are', u'not', u'will', u'not', u'he', u"__s"]
|
|
|
|
* Hyphenated words are split, with the hyphen preserved, e.g.:
|
|
|
|
>>> [w.string for w in EN.tokenize(u'New York-based')]
|
|
[u'New', u'York', u'-', u'based']
|
|
|
|
Other improvements:
|
|
|
|
* Email addresses, URLs, European-formatted dates and other numeric entities not
|
|
found in the PTB are tokenized correctly
|
|
* Heuristic handling of word-final periods (PTB expects sentence boundary detection
|
|
as a pre-process before tokenization.)
|
|
|
|
Take care to ensure your training and run-time data is tokenized according to the
|
|
same scheme. Tokenization problems are a major cause of poor performance for
|
|
NLP tools. If you're using a pre-trained model, the :py:mod:`spacy.ptb3` module
|
|
provides a fully Penn Treebank 3-compliant tokenizer.
|
|
'''
|
|
# TODO
|
|
#The script translate_treebank_tokenization can be used to transform a treebank's
|
|
#annotation to use one of the spacy tokenization schemes.
|
|
|
|
|
|
from __future__ import unicode_literals
|
|
|
|
from libc.stdlib cimport malloc, calloc, free
|
|
from libc.stdint cimport uint64_t
|
|
|
|
cimport lang
|
|
|
|
from spacy import util
|
|
|
|
from spacy import orth
|
|
|
|
TAG_THRESH = 0.5
|
|
UPPER_THRESH = 0.2
|
|
LOWER_THRESH = 0.5
|
|
TITLE_THRESH = 0.7
|
|
|
|
NR_FLAGS = 0
|
|
|
|
OFT_UPPER = NR_FLAGS; NR_FLAGS += 1
|
|
OFT_LOWER = NR_FLAGS; NR_FLAGS += 1
|
|
OFT_TITLE = NR_FLAGS; NR_FLAGS += 1
|
|
|
|
IS_ALPHA = NR_FLAGS; NR_FLAGS += 1
|
|
IS_DIGIT = NR_FLAGS; NR_FLAGS += 1
|
|
IS_PUNCT = NR_FLAGS; NR_FLAGS += 1
|
|
IS_SPACE = NR_FLAGS; NR_FLAGS += 1
|
|
IS_ASCII = NR_FLAGS; NR_FLAGS += 1
|
|
IS_TITLE = NR_FLAGS; NR_FLAGS += 1
|
|
IS_LOWER = NR_FLAGS; NR_FLAGS += 1
|
|
IS_UPPER = NR_FLAGS; NR_FLAGS += 1
|
|
|
|
CAN_PUNCT = NR_FLAGS; NR_FLAGS += 1
|
|
CAN_CONJ = NR_FLAGS; NR_FLAGS += 1
|
|
CAN_NUM = NR_FLAGS; NR_FLAGS += 1
|
|
CAN_DET = NR_FLAGS; NR_FLAGS += 1
|
|
CAN_ADP = NR_FLAGS; NR_FLAGS += 1
|
|
CAN_ADJ = NR_FLAGS; NR_FLAGS += 1
|
|
CAN_ADV = NR_FLAGS; NR_FLAGS += 1
|
|
CAN_VERB = NR_FLAGS; NR_FLAGS += 1
|
|
CAN_NOUN = NR_FLAGS; NR_FLAGS += 1
|
|
CAN_PDT = NR_FLAGS; NR_FLAGS += 1
|
|
CAN_POS = NR_FLAGS; NR_FLAGS += 1
|
|
CAN_PRON = NR_FLAGS; NR_FLAGS += 1
|
|
CAN_PRT = NR_FLAGS; NR_FLAGS += 1
|
|
|
|
NR_VIEWS = 0
|
|
CANON_CASED = NR_VIEWS; NR_VIEWS += 1
|
|
SHAPE = NR_VIEWS; NR_VIEWS += 1
|
|
NON_SPARSE = NR_VIEWS; NR_VIEWS += 1
|
|
|
|
|
|
cdef class English(Language):
|
|
"""English tokenizer, tightly coupled to lexicon.
|
|
|
|
Attributes:
|
|
name (unicode): The two letter code used by Wikipedia for the language.
|
|
lexicon (Lexicon): The lexicon. Exposes the lookup method.
|
|
"""
|
|
|
|
def __cinit__(self, name, string_features, flag_features):
|
|
flag_funcs = [None for _ in range(NR_FLAGS)]
|
|
|
|
flag_funcs[OFT_UPPER] = orth.oft_case('upper', UPPER_THRESH)
|
|
flag_funcs[OFT_LOWER] = orth.oft_case('lower', LOWER_THRESH)
|
|
flag_funcs[OFT_TITLE] = orth.oft_case('title', TITLE_THRESH)
|
|
|
|
flag_funcs[IS_ALPHA] = orth.is_alpha
|
|
flag_funcs[IS_DIGIT] = orth.is_digit
|
|
flag_funcs[IS_PUNCT] = orth.is_punct
|
|
flag_funcs[IS_SPACE] = orth.is_space
|
|
flag_funcs[IS_ASCII] = orth.is_ascii
|
|
flag_funcs[IS_TITLE] = orth.is_title
|
|
flag_funcs[IS_LOWER] = orth.is_lower
|
|
flag_funcs[IS_UPPER] = orth.is_upper
|
|
|
|
flag_funcs[CAN_PUNCT] = orth.can_tag('PUNCT', TAG_THRESH)
|
|
flag_funcs[CAN_CONJ] = orth.can_tag('CONJ', TAG_THRESH)
|
|
flag_funcs[CAN_NUM] = orth.can_tag('NUM', TAG_THRESH)
|
|
flag_funcs[CAN_DET] = orth.can_tag('DET', TAG_THRESH)
|
|
flag_funcs[CAN_ADP] = orth.can_tag('ADP', TAG_THRESH)
|
|
flag_funcs[CAN_ADJ] = orth.can_tag('ADJ', TAG_THRESH)
|
|
flag_funcs[CAN_ADV] = orth.can_tag('ADV', TAG_THRESH)
|
|
flag_funcs[CAN_VERB] = orth.can_tag('VERB', TAG_THRESH)
|
|
flag_funcs[CAN_NOUN] = orth.can_tag('NOUN', TAG_THRESH)
|
|
flag_funcs[CAN_PDT] = orth.can_tag('PDT', TAG_THRESH)
|
|
flag_funcs[CAN_POS] = orth.can_tag('POS', TAG_THRESH)
|
|
flag_funcs[CAN_PRON] = orth.can_tag('PRON', TAG_THRESH)
|
|
flag_funcs[CAN_PRT] = orth.can_tag('PRT', TAG_THRESH)
|
|
|
|
string_funcs = [None for _ in range(NR_VIEWS)]
|
|
string_funcs[CANON_CASED] = orth.canon_case
|
|
string_funcs[SHAPE] = orth.word_shape
|
|
string_funcs[NON_SPARSE] = orth.non_sparse
|
|
self.name = name
|
|
self.cache = {}
|
|
lang_data = util.read_lang_data(name)
|
|
rules, words, probs, clusters, case_stats, tag_stats = lang_data
|
|
self.lexicon = lang.Lexicon(words, probs, clusters, case_stats, tag_stats,
|
|
string_funcs, flag_funcs)
|
|
self._load_special_tokenization(rules)
|
|
|
|
cdef int _split_one(self, unicode word):
|
|
cdef size_t length = len(word)
|
|
cdef int i = 0
|
|
if word.startswith("'s") or word.startswith("'S"):
|
|
return 2
|
|
# Contractions
|
|
if word.endswith("'s") and length >= 3:
|
|
return length - 2
|
|
# Leading punctuation
|
|
if _check_punct(word, 0, length):
|
|
return 1
|
|
elif length >= 1:
|
|
# Split off all trailing punctuation characters
|
|
i = 0
|
|
while i < length and not _check_punct(word, i, length):
|
|
i += 1
|
|
return i
|
|
|
|
cdef bint _check_punct(unicode word, size_t i, size_t length):
|
|
# Don't count appostrophes as punct if the next char is a letter
|
|
if word[i] == "'" and i < (length - 1) and word[i+1].isalpha():
|
|
return i == 0
|
|
if word[i] == "-" and i < (length - 1) and word[i+1] == '-':
|
|
return False
|
|
# Don't count commas as punct if the next char is a number
|
|
if word[i] == "," and i < (length - 1) and word[i+1].isdigit():
|
|
return False
|
|
# Don't count periods as punct if the next char is not whitespace
|
|
if word[i] == "." and i < (length - 1) and not word[i+1].isspace():
|
|
return False
|
|
return not word[i].isalnum()
|
|
|
|
|
|
EN = English('en', [], [])
|