mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			113 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			113 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import random
 | 
						|
import itertools
 | 
						|
 | 
						|
 | 
						|
def make_orth_variants_example(nlp, example, orth_variant_level=0.0):  # TODO: naming
 | 
						|
    raw_text = example.text
 | 
						|
    orig_dict = example.to_dict()
 | 
						|
    variant_text, variant_token_annot = make_orth_variants(
 | 
						|
        nlp, raw_text, orig_dict["token_annotation"], orth_variant_level
 | 
						|
    )
 | 
						|
    doc = nlp.make_doc(variant_text)
 | 
						|
    orig_dict["token_annotation"] = variant_token_annot
 | 
						|
    return example.from_dict(doc, orig_dict)
 | 
						|
 | 
						|
 | 
						|
def make_orth_variants(nlp, raw_text, orig_token_dict, orth_variant_level=0.0):
 | 
						|
    if random.random() >= orth_variant_level:
 | 
						|
        return raw_text, orig_token_dict
 | 
						|
    if not orig_token_dict:
 | 
						|
        return raw_text, orig_token_dict
 | 
						|
    raw = raw_text
 | 
						|
    token_dict = orig_token_dict
 | 
						|
    lower = False
 | 
						|
    if random.random() >= 0.5:
 | 
						|
        lower = True
 | 
						|
        if raw is not None:
 | 
						|
            raw = raw.lower()
 | 
						|
    orth_variants = nlp.vocab.lookups.get_table("orth_variants", {})
 | 
						|
    ndsv = orth_variants.get("single", [])
 | 
						|
    ndpv = orth_variants.get("paired", [])
 | 
						|
    words = token_dict.get("words", [])
 | 
						|
    tags = token_dict.get("tags", [])
 | 
						|
    # keep unmodified if words or tags are not defined
 | 
						|
    if words and tags:
 | 
						|
        if lower:
 | 
						|
            words = [w.lower() for w in words]
 | 
						|
        # single variants
 | 
						|
        punct_choices = [random.choice(x["variants"]) for x in ndsv]
 | 
						|
        for word_idx in range(len(words)):
 | 
						|
            for punct_idx in range(len(ndsv)):
 | 
						|
                if (
 | 
						|
                    tags[word_idx] in ndsv[punct_idx]["tags"]
 | 
						|
                    and words[word_idx] in ndsv[punct_idx]["variants"]
 | 
						|
                ):
 | 
						|
                    words[word_idx] = punct_choices[punct_idx]
 | 
						|
        # paired variants
 | 
						|
        punct_choices = [random.choice(x["variants"]) for x in ndpv]
 | 
						|
        for word_idx in range(len(words)):
 | 
						|
            for punct_idx in range(len(ndpv)):
 | 
						|
                if tags[word_idx] in ndpv[punct_idx]["tags"] and words[
 | 
						|
                    word_idx
 | 
						|
                ] in itertools.chain.from_iterable(ndpv[punct_idx]["variants"]):
 | 
						|
                    # backup option: random left vs. right from pair
 | 
						|
                    pair_idx = random.choice([0, 1])
 | 
						|
                    # best option: rely on paired POS tags like `` / ''
 | 
						|
                    if len(ndpv[punct_idx]["tags"]) == 2:
 | 
						|
                        pair_idx = ndpv[punct_idx]["tags"].index(tags[word_idx])
 | 
						|
                    # next best option: rely on position in variants
 | 
						|
                    # (may not be unambiguous, so order of variants matters)
 | 
						|
                    else:
 | 
						|
                        for pair in ndpv[punct_idx]["variants"]:
 | 
						|
                            if words[word_idx] in pair:
 | 
						|
                                pair_idx = pair.index(words[word_idx])
 | 
						|
                    words[word_idx] = punct_choices[punct_idx][pair_idx]
 | 
						|
        token_dict["words"] = words
 | 
						|
        token_dict["tags"] = tags
 | 
						|
    # modify raw
 | 
						|
    if raw is not None:
 | 
						|
        variants = []
 | 
						|
        for single_variants in ndsv:
 | 
						|
            variants.extend(single_variants["variants"])
 | 
						|
        for paired_variants in ndpv:
 | 
						|
            variants.extend(
 | 
						|
                list(itertools.chain.from_iterable(paired_variants["variants"]))
 | 
						|
            )
 | 
						|
        # store variants in reverse length order to be able to prioritize
 | 
						|
        # longer matches (e.g., "---" before "--")
 | 
						|
        variants = sorted(variants, key=lambda x: len(x))
 | 
						|
        variants.reverse()
 | 
						|
        variant_raw = ""
 | 
						|
        raw_idx = 0
 | 
						|
        # add initial whitespace
 | 
						|
        while raw_idx < len(raw) and raw[raw_idx].isspace():
 | 
						|
            variant_raw += raw[raw_idx]
 | 
						|
            raw_idx += 1
 | 
						|
        for word in words:
 | 
						|
            match_found = False
 | 
						|
            # skip whitespace words
 | 
						|
            if word.isspace():
 | 
						|
                match_found = True
 | 
						|
            # add identical word
 | 
						|
            elif word not in variants and raw[raw_idx:].startswith(word):
 | 
						|
                variant_raw += word
 | 
						|
                raw_idx += len(word)
 | 
						|
                match_found = True
 | 
						|
            # add variant word
 | 
						|
            else:
 | 
						|
                for variant in variants:
 | 
						|
                    if not match_found and raw[raw_idx:].startswith(variant):
 | 
						|
                        raw_idx += len(variant)
 | 
						|
                        variant_raw += word
 | 
						|
                        match_found = True
 | 
						|
            # something went wrong, abort
 | 
						|
            # (add a warning message?)
 | 
						|
            if not match_found:
 | 
						|
                return raw_text, orig_token_dict
 | 
						|
            # add following whitespace
 | 
						|
            while raw_idx < len(raw) and raw[raw_idx].isspace():
 | 
						|
                variant_raw += raw[raw_idx]
 | 
						|
                raw_idx += 1
 | 
						|
        raw = variant_raw
 | 
						|
    return raw, token_dict
 |