mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* Create aryaprabhudesai.md (#2681) * Update _install.jade (#2688) Typo fix: "models" -> "model" * Add FAC to spacy.explain (resolves #2706) * Remove docstrings for deprecated arguments (see #2703) * When calling getoption() in conftest.py, pass a default option (#2709) * When calling getoption() in conftest.py, pass a default option This is necessary to allow testing an installed spacy by running: pytest --pyargs spacy * Add contributor agreement * update bengali token rules for hyphen and digits (#2731) * Less norm computations in token similarity (#2730) * Less norm computations in token similarity * Contributor agreement * Remove ')' for clarity (#2737) Sorry, don't mean to be nitpicky, I just noticed this when going through the CLI and thought it was a quick fix. That said, if this was intention than please let me know. * added contributor agreement for mbkupfer (#2738) * Basic support for Telugu language (#2751) * Lex _attrs for polish language (#2750) * Signed spaCy contributor agreement * Added polish version of english lex_attrs * Introduces a bulk merge function, in order to solve issue #653 (#2696) * Fix comment * Introduce bulk merge to increase performance on many span merges * Sign contributor agreement * Implement pull request suggestions * Describe converters more explicitly (see #2643) * Add multi-threading note to Language.pipe (resolves #2582) [ci skip] * Fix formatting * Fix dependency scheme docs (closes #2705) [ci skip] * Don't set stop word in example (closes #2657) [ci skip] * Add words to portuguese language _num_words (#2759) * Add words to portuguese language _num_words * Add words to portuguese language _num_words * Update Indonesian model (#2752) * adding e-KTP in tokenizer exceptions list * add exception token * removing lines with containing space as it won't matter since we use .split() method in the end, added new tokens in exception * add tokenizer exceptions list * combining base_norms with norm_exceptions * adding norm_exception * fix double key in lemmatizer * remove unused import on punctuation.py * reformat stop_words to reduce number of lines, improve readibility * updating tokenizer exception * implement is_currency for lang/id * adding orth_first_upper in tokenizer_exceptions * update the norm_exception list * remove bunch of abbreviations * adding contributors file * Fixed spaCy+Keras example (#2763) * bug fixes in keras example * created contributor agreement * Adding French hyphenated first name (#2786) * Fix typo (closes #2784) * Fix typo (#2795) [ci skip] Fixed typo on line 6 "regcognizer --> recognizer" * Adding basic support for Sinhala language. (#2788) * adding Sinhala language package, stop words, examples and lex_attrs. * Adding contributor agreement * Updating contributor agreement * Also include lowercase norm exceptions * Fix error (#2802) * Fix error ValueError: cannot resize an array that references or is referenced by another array in this way. Use the resize function * added spaCy Contributor Agreement * Add charlax's contributor agreement (#2805) * agreement of contributor, may I introduce a tiny pl languge contribution (#2799) * Contributors agreement * Contributors agreement * Contributors agreement * Add jupyter=True to displacy.render in documentation (#2806) * Revert "Also include lowercase norm exceptions" This reverts commit70f4e8adf3. * Remove deprecated encoding argument to msgpack * Set up dependency tree pattern matching skeleton (#2732) * Fix bug when too many entity types. Fixes #2800 * Fix Python 2 test failure * Require older msgpack-numpy * Restore encoding arg on msgpack-numpy * Try to fix version pin for msgpack-numpy * Update Portuguese Language (#2790) * Add words to portuguese language _num_words * Add words to portuguese language _num_words * Portuguese - Add/remove stopwords, fix tokenizer, add currency symbols * Extended punctuation and norm_exceptions in the Portuguese language * Correct error in spacy universe docs concerning spacy-lookup (#2814) * Update Keras Example for (Parikh et al, 2016) implementation (#2803) * bug fixes in keras example * created contributor agreement * baseline for Parikh model * initial version of parikh 2016 implemented * tested asymmetric models * fixed grevious error in normalization * use standard SNLI test file * begin to rework parikh example * initial version of running example * start to document the new version * start to document the new version * Update Decompositional Attention.ipynb * fixed calls to similarity * updated the README * import sys package duh * simplified indexing on mapping word to IDs * stupid python indent error * added code from https://github.com/tensorflow/tensorflow/issues/3388 for tf bug workaround * Fix typo (closes #2815) [ci skip] * Update regex version dependency * Set version to 2.0.13.dev3 * Skip seemingly problematic test * Remove problematic test * Try previous version of regex * Revert "Remove problematic test" This reverts commitbdebbef455. * Unskip test * Try older version of regex * 💫 Update training examples and use minibatching (#2830) <!--- Provide a general summary of your changes in the title. --> ## Description Update the training examples in `/examples/training` to show usage of spaCy's `minibatch` and `compounding` helpers ([see here](https://spacy.io/usage/training#tips-batch-size) for details). The lack of batching in the examples has caused some confusion in the past, especially for beginners who would copy-paste the examples, update them with large training sets and experienced slow and unsatisfying results. ### Types of change enhancements ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Visual C++ link updated (#2842) (closes #2841) [ci skip] * New landing page * Add contribution agreement * Correcting lang/ru/examples.py (#2845) * Correct some grammatical inaccuracies in lang\ru\examples.py; filled Contributor Agreement * Correct some grammatical inaccuracies in lang\ru\examples.py * Move contributor agreement to separate file * Set version to 2.0.13.dev4 * Add Persian(Farsi) language support (#2797) * Also include lowercase norm exceptions * Remove in favour of https://github.com/explosion/spaCy/graphs/contributors * Rule-based French Lemmatizer (#2818) <!--- Provide a general summary of your changes in the title. --> ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> Add a rule-based French Lemmatizer following the english one and the excellent PR for [greek language optimizations](https://github.com/explosion/spaCy/pull/2558) to adapt the Lemmatizer class. ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> - Lemma dictionary used can be found [here](http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html), I used the XML version. - Add several files containing exhaustive list of words for each part of speech - Add some lemma rules - Add POS that are not checked in the standard Lemmatizer, i.e PRON, DET, ADV and AUX - Modify the Lemmatizer class to check in lookup table as a last resort if POS not mentionned - Modify the lemmatize function to check in lookup table as a last resort - Init files are updated so the model can support all the functionalities mentioned above - Add words to tokenizer_exceptions_list.py in respect to regex used in tokenizer_exceptions.py ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [X] I have submitted the spaCy Contributor Agreement. - [X] I ran the tests, and all new and existing tests passed. - [X] My changes don't require a change to the documentation, or if they do, I've added all required information. * Set version to 2.0.13 * Fix formatting and consistency * Update docs for new version [ci skip] * Increment version [ci skip] * Add info on wheels [ci skip] * Adding "This is a sentence" example to Sinhala (#2846) * Add wheels badge * Update badge [ci skip] * Update README.rst [ci skip] * Update murmurhash pin * Increment version to 2.0.14.dev0 * Update GPU docs for v2.0.14 * Add wheel to setup_requires * Import prefer_gpu and require_gpu functions from Thinc * Add tests for prefer_gpu() and require_gpu() * Update requirements and setup.py * Workaround bug in thinc require_gpu * Set version to v2.0.14 * Update push-tag script * Unhack prefer_gpu * Require thinc 6.10.6 * Update prefer_gpu and require_gpu docs [ci skip] * Fix specifiers for GPU * Set version to 2.0.14.dev1 * Set version to 2.0.14 * Update Thinc version pin * Increment version * Fix msgpack-numpy version pin * Increment version * Update version to 2.0.16 * Update version [ci skip] * Redundant ')' in the Stop words' example (#2856) <!--- Provide a general summary of your changes in the title. --> ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [ ] I have submitted the spaCy Contributor Agreement. - [ ] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information. * Documentation improvement regarding joblib and SO (#2867) Some documentation improvements ## Description 1. Fixed the dead URL to joblib 2. Fixed Stack Overflow brand name (with space) ### Types of change Documentation ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * raise error when setting overlapping entities as doc.ents (#2880) * Fix out-of-bounds access in NER training The helper method state.B(1) gets the index of the first token of the buffer, or -1 if no such token exists. Normally this is safe because we pass this to functions like state.safe_get(), which returns an empty token. Here we used it directly as an array index, which is not okay! This error may have been the cause of out-of-bounds access errors during training. Similar errors may still be around, so much be hunted down. Hunting this one down took a long time...I printed out values across training runs and diffed, looking for points of divergence between runs, when no randomness should be allowed. * Change PyThaiNLP Url (#2876) * Fix missing comma * Add example showing a fix-up rule for space entities * Set version to 2.0.17.dev0 * Update regex version * Revert "Update regex version" This reverts commit62358dd867. * Try setting older regex version, to align with conda * Set version to 2.0.17 * Add spacy-js to universe [ci-skip] * Add spacy-raspberry to universe (closes #2889) * Add script to validate universe json [ci skip] * Removed space in docs + added contributor indo (#2909) * - removed unneeded space in documentation * - added contributor info * Allow input text of length up to max_length, inclusive (#2922) * Include universe spec for spacy-wordnet component (#2919) * feat: include universe spec for spacy-wordnet component * chore: include spaCy contributor agreement * Minor formatting changes [ci skip] * Fix image [ci skip] Twitter URL doesn't work on live site * Check if the word is in one of the regular lists specific to each POS (#2886) * 💫 Create random IDs for SVGs to prevent ID clashes (#2927) Resolves #2924. ## Description Fixes problem where multiple visualizations in Jupyter notebooks would have clashing arc IDs, resulting in weirdly positioned arc labels. Generating a random ID prefix so even identical parses won't receive the same IDs for consistency (even if effect of ID clash isn't noticable here.) ### Types of change bug fix ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Fix typo [ci skip] * fixes symbolic link on py3 and windows (#2949) * fixes symbolic link on py3 and windows during setup of spacy using command python -m spacy link en_core_web_sm en closes #2948 * Update spacy/compat.py Co-Authored-By: cicorias <cicorias@users.noreply.github.com> * Fix formatting * Update universe [ci skip] * Catalan Language Support (#2940) * Catalan language Support * Ddding Catalan to documentation * Sort languages alphabetically [ci skip] * Update tests for pytest 4.x (#2965) <!--- Provide a general summary of your changes in the title. --> ## Description - [x] Replace marks in params for pytest 4.0 compat ([see here](https://docs.pytest.org/en/latest/deprecations.html#marks-in-pytest-mark-parametrize)) - [x] Un-xfail passing tests (some fixes in a recent update resolved a bunch of issues, but tests were apparently never updated here) ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Fix regex pin to harmonize with conda (#2964) * Update README.rst * Fix bug where Vocab.prune_vector did not use 'batch_size' (#2977) Fixes #2976 * Fix typo * Fix typo * Remove duplicate file * Require thinc 7.0.0.dev2 Fixes bug in gpu_ops that would use cupy instead of numpy on CPU * Add missing import * Fix error IDs * Fix tests
		
			
				
	
	
		
			828 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			828 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //- 💫 DOCS > API > DOC
 | ||
| 
 | ||
| include ../_includes/_mixins
 | ||
| 
 | ||
| p
 | ||
|     |  A #[code Doc] is a sequence of #[+api("token") #[code Token]] objects.
 | ||
|     |  Access sentences and named entities, export annotations to numpy arrays,
 | ||
|     |  losslessly serialize to compressed binary strings. The #[code Doc] object
 | ||
|     |  holds an array of #[code TokenC] structs. The Python-level #[code Token]
 | ||
|     |  and #[+api("span") #[code Span]] objects are views of this array, i.e.
 | ||
|     |  they don't own the data themselves.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     # Construction 1
 | ||
|     doc = nlp(u'Some text')
 | ||
| 
 | ||
|     # Construction 2
 | ||
|     from spacy.tokens import Doc
 | ||
|     doc = Doc(nlp.vocab, words=[u'hello', u'world', u'!'],
 | ||
|                                spaces=[True, False, False])
 | ||
| 
 | ||
| +h(2, "init") Doc.__init__
 | ||
|     +tag method
 | ||
| 
 | ||
| p
 | ||
|     |  Construct a #[code Doc] object. The most common way to get a #[code Doc]
 | ||
|     |  object is via the #[code nlp] object.
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code vocab]
 | ||
|         +cell #[code Vocab]
 | ||
|         +cell A storage container for lexical types.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code words]
 | ||
|         +cell -
 | ||
|         +cell A list of strings to add to the container.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code spaces]
 | ||
|         +cell -
 | ||
|         +cell
 | ||
|             |  A list of boolean values indicating whether each word has a
 | ||
|             |  subsequent space. Must have the same length as #[code words], if
 | ||
|             |  specified. Defaults to a sequence of #[code True].
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell #[code Doc]
 | ||
|         +cell The newly constructed object.
 | ||
| 
 | ||
| +h(2, "getitem") Doc.__getitem__
 | ||
|     +tag method
 | ||
| 
 | ||
| p
 | ||
|     |  Get a #[+api("token") #[code Token]] object at position #[code i], where
 | ||
|     |  #[code i] is an integer. Negative indexing is supported, and follows the
 | ||
|     |  usual Python semantics, i.e. #[code doc[-2]] is #[code doc[len(doc) - 2]].
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc = nlp(u'Give it back! He pleaded.')
 | ||
|     assert doc[0].text == 'Give'
 | ||
|     assert doc[-1].text == '.'
 | ||
|     span = doc[1:3]
 | ||
|     assert span.text == 'it back'
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code i]
 | ||
|         +cell int
 | ||
|         +cell The index of the token.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell #[code Token]
 | ||
|         +cell The token at #[code doc[i]].
 | ||
| 
 | ||
| p
 | ||
|     |  Get a #[+api("span") #[code Span]] object, starting at position
 | ||
|     |  #[code start] (token index) and ending at position #[code end] (token
 | ||
|     |  index).
 | ||
| 
 | ||
| p
 | ||
|     |  For instance, #[code doc[2:5]] produces a span consisting of tokens 2, 3
 | ||
|     |  and 4. Stepped slices (e.g. #[code doc[start : end : step]]) are not
 | ||
|     |  supported, as #[code Span] objects must be contiguous (cannot have gaps).
 | ||
|     |  You can use negative indices and open-ended ranges, which have their
 | ||
|     |  normal Python semantics.
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code start_end]
 | ||
|         +cell tuple
 | ||
|         +cell The slice of the document to get.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell #[code Span]
 | ||
|         +cell The span at #[code doc[start : end]].
 | ||
| 
 | ||
| +h(2, "iter") Doc.__iter__
 | ||
|     +tag method
 | ||
| 
 | ||
| p
 | ||
|     |  Iterate over #[code Token] objects, from which the annotations can be
 | ||
|     |  easily accessed.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc = nlp(u'Give it back')
 | ||
|     assert [t.text for t in doc] == [u'Give', u'it', u'back']
 | ||
| 
 | ||
| p
 | ||
|     |  This is the main way of accessing #[+api("token") #[code Token]] objects,
 | ||
|     |  which are the main way annotations are accessed from Python. If
 | ||
|     |  faster-than-Python speeds are required, you can instead access the
 | ||
|     |  annotations as a numpy array, or access the underlying C data directly
 | ||
|     |  from Cython.
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell yields
 | ||
|         +cell #[code Token]
 | ||
|         +cell A #[code Token] object.
 | ||
| 
 | ||
| +h(2, "len") Doc.__len__
 | ||
|     +tag method
 | ||
| 
 | ||
| p Get the number of tokens in the document.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc = nlp(u'Give it back! He pleaded.')
 | ||
|     assert len(doc) == 7
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell int
 | ||
|         +cell The number of tokens in the document.
 | ||
| 
 | ||
| +h(2, "set_extension") Doc.set_extension
 | ||
|     +tag classmethod
 | ||
|     +tag-new(2)
 | ||
| 
 | ||
| p
 | ||
|     |  Define a custom attribute on the #[code Doc] which becomes available via
 | ||
|     |  #[code Doc._]. For details, see the documentation on
 | ||
|     |  #[+a("/usage/processing-pipelines#custom-components-attributes") custom attributes].
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     from spacy.tokens import Doc
 | ||
|     city_getter = lambda doc: any(city in doc.text for city in ('New York', 'Paris', 'Berlin'))
 | ||
|     Doc.set_extension('has_city', getter=city_getter)
 | ||
|     doc = nlp(u'I like New York')
 | ||
|     assert doc._.has_city
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code name]
 | ||
|         +cell unicode
 | ||
|         +cell
 | ||
|             |  Name of the attribute to set by the extension. For example,
 | ||
|             |  #[code 'my_attr'] will be available as #[code doc._.my_attr].
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code default]
 | ||
|         +cell -
 | ||
|         +cell
 | ||
|             |  Optional default value of the attribute if no getter or method
 | ||
|             |  is defined.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code method]
 | ||
|         +cell callable
 | ||
|         +cell
 | ||
|             |  Set a custom method on the object, for example
 | ||
|             |  #[code doc._.compare(other_doc)].
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code getter]
 | ||
|         +cell callable
 | ||
|         +cell
 | ||
|             |  Getter function that takes the object and returns an attribute
 | ||
|             |  value. Is called when the user accesses the #[code ._] attribute.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code setter]
 | ||
|         +cell callable
 | ||
|         +cell
 | ||
|             |  Setter function that takes the #[code Doc] and a value, and
 | ||
|             |  modifies the object. Is called when the user writes to the
 | ||
|             |  #[code Doc._] attribute.
 | ||
| 
 | ||
| +h(2, "get_extension") Doc.get_extension
 | ||
|     +tag classmethod
 | ||
|     +tag-new(2)
 | ||
| 
 | ||
| p
 | ||
|     |  Look up a previously registered extension by name. Returns a 4-tuple
 | ||
|     |  #[code.u-break (default, method, getter, setter)] if the extension is
 | ||
|     |  registered. Raises a #[code KeyError] otherwise.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     from spacy.tokens import Doc
 | ||
|     Doc.set_extension('has_city', default=False)
 | ||
|     extension = Doc.get_extension('has_city')
 | ||
|     assert extension == (False, None, None, None)
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code name]
 | ||
|         +cell unicode
 | ||
|         +cell Name of the extension.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell tuple
 | ||
|         +cell
 | ||
|             |  A #[code.u-break (default, method, getter, setter)] tuple of the
 | ||
|             |  extension.
 | ||
| 
 | ||
| +h(2, "has_extension") Doc.has_extension
 | ||
|     +tag classmethod
 | ||
|     +tag-new(2)
 | ||
| 
 | ||
| p Check whether an extension has been registered on the #[code Doc] class.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     from spacy.tokens import Doc
 | ||
|     Doc.set_extension('has_city', default=False)
 | ||
|     assert Doc.has_extension('has_city')
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code name]
 | ||
|         +cell unicode
 | ||
|         +cell Name of the extension to check.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell bool
 | ||
|         +cell Whether the extension has been registered.
 | ||
| 
 | ||
| +h(2, "remove_extension") Doc.remove_extension
 | ||
|     +tag classmethod
 | ||
|     +tag-new("2.0.12")
 | ||
| 
 | ||
| p Remove a previously registered extension.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     from spacy.tokens import Doc
 | ||
|     Doc.set_extension('has_city', default=False)
 | ||
|     removed = Doc.remove_extension('has_city')
 | ||
|     assert not Doc.has_extension('has_city')
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code name]
 | ||
|         +cell unicode
 | ||
|         +cell Name of the extension.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell tuple
 | ||
|         +cell
 | ||
|             |  A #[code.u-break (default, method, getter, setter)] tuple of the
 | ||
|             |  removed extension.
 | ||
| 
 | ||
| +h(2, "char_span") Doc.char_span
 | ||
|     +tag method
 | ||
|     +tag-new(2)
 | ||
| 
 | ||
| p
 | ||
|     |  Create a #[code Span] object from the slice #[code doc.text[start : end]].
 | ||
|     |  Returns #[code None] if the character indices don't map to a valid span.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc = nlp(u'I like New York')
 | ||
|     span = doc.char_span(7, 15, label=u'GPE')
 | ||
|     assert span.text == 'New York'
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code start]
 | ||
|         +cell int
 | ||
|         +cell The index of the first character of the span.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code end]
 | ||
|         +cell int
 | ||
|         +cell The index of the last character after the span.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code label]
 | ||
|         +cell uint64 / unicode
 | ||
|         +cell A label to attach to the Span, e.g. for named entities.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code vector]
 | ||
|         +cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
 | ||
|         +cell A meaning representation of the span.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell #[code Span]
 | ||
|         +cell The newly constructed object or #[code None].
 | ||
| 
 | ||
| +h(2, "similarity") Doc.similarity
 | ||
|     +tag method
 | ||
|     +tag-model("vectors")
 | ||
| 
 | ||
| p
 | ||
|     |  Make a semantic similarity estimate. The default estimate is cosine
 | ||
|     |  similarity using an average of word vectors.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     apples = nlp(u'I like apples')
 | ||
|     oranges = nlp(u'I like oranges')
 | ||
|     apples_oranges = apples.similarity(oranges)
 | ||
|     oranges_apples = oranges.similarity(apples)
 | ||
|     assert apples_oranges == oranges_apples
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code other]
 | ||
|         +cell -
 | ||
|         +cell
 | ||
|             |  The object to compare with. By default, accepts #[code Doc],
 | ||
|             |  #[code Span], #[code Token] and #[code Lexeme] objects.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell float
 | ||
|         +cell A scalar similarity score. Higher is more similar.
 | ||
| 
 | ||
| +h(2, "count_by") Doc.count_by
 | ||
|     +tag method
 | ||
| 
 | ||
| p
 | ||
|     |  Count the frequencies of a given attribute. Produces a dict of
 | ||
|     |  #[code {attr (int): count (ints)}] frequencies, keyed by the values
 | ||
|     |  of the given attribute ID.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     from spacy.attrs import ORTH
 | ||
|     doc = nlp(u'apple apple orange banana')
 | ||
|     assert doc.count_by(ORTH) == {7024L: 1, 119552L: 1, 2087L: 2}
 | ||
|     doc.to_array([attrs.ORTH])
 | ||
|     # array([[11880], [11880], [7561], [12800]])
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code attr_id]
 | ||
|         +cell int
 | ||
|         +cell The attribute ID
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell dict
 | ||
|         +cell A dictionary mapping attributes to integer counts.
 | ||
| 
 | ||
| +h(2, "get_lca_matrix") Doc.get_lca_matrix
 | ||
|     +tag method
 | ||
| 
 | ||
| p
 | ||
|     |  Calculates the lowest common ancestor matrix for a given #[code Doc].
 | ||
|     |  Returns LCA matrix containing the integer index of the ancestor, or
 | ||
|     |  #[code -1] if no common ancestor is found, e.g. if span excludes a
 | ||
|     |  necessary ancestor.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc = nlp(u"This is a test")
 | ||
|     matrix = doc.get_lca_matrix()
 | ||
|     # array([[0, 1, 1, 1], [1, 1, 1, 1], [1, 1, 2, 3], [1, 1, 3, 3]], dtype=int32)
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell #[code.u-break numpy.ndarray[ndim=2, dtype='int32']]
 | ||
|         +cell The lowest common ancestor matrix of the #[code Doc].
 | ||
| 
 | ||
| +h(2, "to_array") Doc.to_array
 | ||
|     +tag method
 | ||
| 
 | ||
| p
 | ||
|     |  Export given token attributes to a numpy #[code ndarray].
 | ||
|     |  If #[code attr_ids] is a sequence of #[code M] attributes,
 | ||
|     |  the output array will  be of shape #[code (N, M)], where #[code N]
 | ||
|     |  is the length of the #[code Doc] (in tokens). If #[code attr_ids] is
 | ||
|     |  a single attribute, the output shape will be #[code (N,)]. You can
 | ||
|     |  specify attributes by integer ID (e.g. #[code spacy.attrs.LEMMA])
 | ||
|     |  or string name (e.g. 'LEMMA' or 'lemma'). The values will be 64-bit
 | ||
|     |  integers.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
 | ||
|     doc = nlp(text)
 | ||
|     # All strings mapped to integers, for easy export to numpy
 | ||
|     np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
 | ||
|     np_array = doc.to_array("POS")
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code attr_ids]
 | ||
|         +cell list or int or string
 | ||
|         +cell
 | ||
|             | A list of attributes (int IDs or string names) or
 | ||
|             | a single attribute (int ID or string name)
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell
 | ||
|             | #[code.u-break numpy.ndarray[ndim=2, dtype='uint64']] or
 | ||
|             | #[code.u-break numpy.ndarray[ndim=1, dtype='uint64']] or
 | ||
|         +cell
 | ||
|             |  The exported attributes as a 2D numpy array, with one row per
 | ||
|             |  token and one column per attribute (when #[code attr_ids] is a
 | ||
|             |  list), or as a 1D numpy array, with one item per attribute (when
 | ||
|             |  #[code attr_ids] is a single value).
 | ||
| 
 | ||
| +h(2, "from_array") Doc.from_array
 | ||
|     +tag method
 | ||
| 
 | ||
| p
 | ||
|     |  Load attributes from a numpy array. Write to a #[code Doc] object, from
 | ||
|     |  an #[code (M, N)] array of attributes.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
 | ||
|     from spacy.tokens import Doc
 | ||
|     doc = nlp("Hello world!")
 | ||
|     np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
 | ||
|     doc2 = Doc(doc.vocab, words=[t.text for t in doc])
 | ||
|     doc2.from_array([LOWER, POS, ENT_TYPE, IS_ALPHA], np_array)
 | ||
|     assert doc[0].pos_ == doc2[0].pos_
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code attrs]
 | ||
|         +cell ints
 | ||
|         +cell A list of attribute ID ints.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code array]
 | ||
|         +cell #[code.u-break numpy.ndarray[ndim=2, dtype='int32']]
 | ||
|         +cell The attribute values to load.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell #[code Doc]
 | ||
|         +cell Itself.
 | ||
| 
 | ||
| +h(2, "to_disk") Doc.to_disk
 | ||
|     +tag method
 | ||
|     +tag-new(2)
 | ||
| 
 | ||
| p Save the current state to a directory.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc.to_disk('/path/to/doc')
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code path]
 | ||
|         +cell unicode or #[code Path]
 | ||
|         +cell
 | ||
|             |  A path to a directory, which will be created if it doesn't exist.
 | ||
|             |  Paths may be either strings or #[code Path]-like objects.
 | ||
| 
 | ||
| +h(2, "from_disk") Doc.from_disk
 | ||
|     +tag method
 | ||
|     +tag-new(2)
 | ||
| 
 | ||
| p Loads state from a directory. Modifies the object in place and returns it.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     from spacy.tokens import Doc
 | ||
|     from spacy.vocab import Vocab
 | ||
|     doc = Doc(Vocab()).from_disk('/path/to/doc')
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code path]
 | ||
|         +cell unicode or #[code Path]
 | ||
|         +cell
 | ||
|             |  A path to a directory. Paths may be either strings or
 | ||
|             |  #[code Path]-like objects.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell #[code Doc]
 | ||
|         +cell The modified #[code Doc] object.
 | ||
| 
 | ||
| +h(2, "to_bytes") Doc.to_bytes
 | ||
|     +tag method
 | ||
| 
 | ||
| p Serialize, i.e. export the document contents to a binary string.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc = nlp(u'Give it back! He pleaded.')
 | ||
|     doc_bytes = doc.to_bytes()
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell bytes
 | ||
|         +cell
 | ||
|             |  A losslessly serialized copy of the #[code Doc], including all
 | ||
|             |  annotations.
 | ||
| 
 | ||
| +h(2, "from_bytes") Doc.from_bytes
 | ||
|     +tag method
 | ||
| 
 | ||
| p Deserialize, i.e. import the document contents from a binary string.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     from spacy.tokens import Doc
 | ||
|     text = u'Give it back! He pleaded.'
 | ||
|     doc = nlp(text)
 | ||
|     bytes = doc.to_bytes()
 | ||
|     doc2 = Doc(doc.vocab).from_bytes(bytes)
 | ||
|     assert doc.text == doc2.text
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code data]
 | ||
|         +cell bytes
 | ||
|         +cell The string to load from.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell #[code Doc]
 | ||
|         +cell The #[code Doc] object.
 | ||
| 
 | ||
| +h(2, "merge") Doc.merge
 | ||
|     +tag method
 | ||
| 
 | ||
| p
 | ||
|     |  Retokenize the document, such that the span at
 | ||
|     |  #[code doc.text[start_idx : end_idx]] is merged into a single token. If
 | ||
|     |  #[code start_idx] and #[code end_idx] do not mark start and end token
 | ||
|     |  boundaries, the document remains unchanged.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc = nlp(u'Los Angeles start.')
 | ||
|     doc.merge(0, len('Los Angeles'), 'NNP', 'Los Angeles', 'GPE')
 | ||
|     assert [t.text for t in doc] == [u'Los Angeles', u'start', u'.']
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code start_idx]
 | ||
|         +cell int
 | ||
|         +cell The character index of the start of the slice to merge.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code end_idx]
 | ||
|         +cell int
 | ||
|         +cell The character index after the end of the slice to merge.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code **attributes]
 | ||
|         +cell -
 | ||
|         +cell
 | ||
|             |  Attributes to assign to the merged token. By default,
 | ||
|             |  attributes are inherited from the syntactic root token of
 | ||
|             |  the span.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell #[code Token]
 | ||
|         +cell
 | ||
|             |  The newly merged token, or #[code None] if the start and end
 | ||
|             |  indices did not fall at token boundaries
 | ||
| 
 | ||
| +h(2, "print_tree") Doc.print_tree
 | ||
|     +tag method
 | ||
|     +tag-model("parse")
 | ||
| 
 | ||
| p
 | ||
|     |  Returns the parse trees in JSON (dict) format. Especially useful for
 | ||
|     |  web applications.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc = nlp(u'Alice ate the pizza.')
 | ||
|     trees = doc.print_tree()
 | ||
|     # {'modifiers': [
 | ||
|     #   {'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'},
 | ||
|     #   {'modifiers': [{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'},
 | ||
|     #   {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}
 | ||
|     # ], 'NE': '', 'word': 'ate', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'eat'}
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code light]
 | ||
|         +cell bool
 | ||
|         +cell Don't include lemmas or entities.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code flat]
 | ||
|         +cell bool
 | ||
|         +cell Don't include arcs or modifiers.
 | ||
| 
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell dict
 | ||
|         +cell Parse tree as dict.
 | ||
| 
 | ||
| +h(2, "ents") Doc.ents
 | ||
|     +tag property
 | ||
|     +tag-model("NER")
 | ||
| 
 | ||
| p
 | ||
|     |  Iterate over the entities in the document. Yields named-entity
 | ||
|     |  #[code Span] objects, if the entity recognizer has been applied to the
 | ||
|     |  document.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc = nlp(u'Mr. Best flew to New York on Saturday morning.')
 | ||
|     ents = list(doc.ents)
 | ||
|     assert ents[0].label == 346
 | ||
|     assert ents[0].label_ == 'PERSON'
 | ||
|     assert ents[0].text == 'Mr. Best'
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell yields
 | ||
|         +cell #[code Span]
 | ||
|         +cell Entities in the document.
 | ||
| 
 | ||
| +h(2, "noun_chunks") Doc.noun_chunks
 | ||
|     +tag property
 | ||
|     +tag-model("parse")
 | ||
| 
 | ||
| p
 | ||
|     |  Iterate over the base noun phrases in the document. Yields base
 | ||
|     |  noun-phrase #[code Span] objects, if the document has been syntactically
 | ||
|     |  parsed. A base noun phrase, or "NP chunk", is a noun phrase that does not
 | ||
|     |  permit other NPs to be nested within it – so no NP-level coordination, no
 | ||
|     |  prepositional phrases, and no relative clauses.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc = nlp(u'A phrase with another phrase occurs.')
 | ||
|     chunks = list(doc.noun_chunks)
 | ||
|     assert chunks[0].text == "A phrase"
 | ||
|     assert chunks[1].text == "another phrase"
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell yields
 | ||
|         +cell #[code Span]
 | ||
|         +cell Noun chunks in the document.
 | ||
| 
 | ||
| +h(2, "sents") Doc.sents
 | ||
|     +tag property
 | ||
|     +tag-model("parse")
 | ||
| 
 | ||
| p
 | ||
|     |  Iterate over the sentences in the document. Sentence spans have no label.
 | ||
|     |  To improve accuracy on informal texts, spaCy calculates sentence boundaries
 | ||
|     |  from the syntactic dependency parse. If the parser is disabled,
 | ||
|     |  the #[code sents] iterator will be unavailable.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc = nlp(u"This is a sentence. Here's another...")
 | ||
|     sents = list(doc.sents)
 | ||
|     assert len(sents) == 2
 | ||
|     assert [s.root.text for s in sents] == ["is", "'s"]
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell yields
 | ||
|         +cell #[code Span]
 | ||
|         +cell Sentences in the document.
 | ||
| 
 | ||
| +h(2, "has_vector") Doc.has_vector
 | ||
|     +tag property
 | ||
|     +tag-model("vectors")
 | ||
| 
 | ||
| p
 | ||
|     |  A boolean value indicating whether a word vector is associated with the
 | ||
|     |  object.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc = nlp(u'I like apples')
 | ||
|     assert doc.has_vector
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell bool
 | ||
|         +cell Whether the document has a vector data attached.
 | ||
| 
 | ||
| +h(2, "vector") Doc.vector
 | ||
|     +tag property
 | ||
|     +tag-model("vectors")
 | ||
| 
 | ||
| p
 | ||
|     |  A real-valued meaning representation. Defaults to an average of the
 | ||
|     |  token vectors.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc = nlp(u'I like apples')
 | ||
|     assert doc.vector.dtype == 'float32'
 | ||
|     assert doc.vector.shape == (300,)
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
 | ||
|         +cell A 1D numpy array representing the document's semantics.
 | ||
| 
 | ||
| +h(2, "vector_norm") Doc.vector_norm
 | ||
|     +tag property
 | ||
|     +tag-model("vectors")
 | ||
| 
 | ||
| p
 | ||
|     |  The L2 norm of the document's vector representation.
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc1 = nlp(u'I like apples')
 | ||
|     doc2 = nlp(u'I like oranges')
 | ||
|     doc1.vector_norm # 4.54232424414368
 | ||
|     doc2.vector_norm # 3.304373298575751
 | ||
|     assert doc1.vector_norm != doc2.vector_norm
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row("foot")
 | ||
|         +cell returns
 | ||
|         +cell float
 | ||
|         +cell The L2 norm of the vector representation.
 | ||
| 
 | ||
| +h(2, "attributes") Attributes
 | ||
| 
 | ||
| +table(["Name", "Type", "Description"])
 | ||
|     +row
 | ||
|         +cell #[code text]
 | ||
|         +cell unicode
 | ||
|         +cell A unicode representation of the document text.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code text_with_ws]
 | ||
|         +cell unicode
 | ||
|         +cell
 | ||
|             |  An alias of #[code Doc.text], provided for duck-type compatibility
 | ||
|             |  with #[code Span] and #[code Token].
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code mem]
 | ||
|         +cell #[code Pool]
 | ||
|         +cell The document's local memory heap, for all C data it owns.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code vocab]
 | ||
|         +cell #[code Vocab]
 | ||
|         +cell The store of lexical types.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code tensor] #[+tag-new(2)]
 | ||
|         +cell object
 | ||
|         +cell Container for dense vector representations.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code cats] #[+tag-new(2)]
 | ||
|         +cell dictionary
 | ||
|         +cell
 | ||
|             |  Maps either a label to a score for categories applied to whole
 | ||
|             |  document, or #[code (start_char, end_char, label)] to score for
 | ||
|             |  categories applied to spans. #[code start_char] and #[code end_char]
 | ||
|             |  should be character offsets, label can be either a string or an
 | ||
|             |  integer ID, and score should be a float.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code user_data]
 | ||
|         +cell -
 | ||
|         +cell A generic storage area, for user custom data.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code is_tagged]
 | ||
|         +cell bool
 | ||
|         +cell
 | ||
|             |  A flag indicating that the document has been part-of-speech
 | ||
|             |  tagged.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code is_parsed]
 | ||
|         +cell bool
 | ||
|         +cell A flag indicating that the document has been syntactically parsed.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code is_sentenced]
 | ||
|         +cell bool
 | ||
|         +cell
 | ||
|             |  A flag indicating that sentence boundaries have been applied to
 | ||
|             |  the document.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code sentiment]
 | ||
|         +cell float
 | ||
|         +cell The document's positivity/negativity score, if available.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code user_hooks]
 | ||
|         +cell dict
 | ||
|         +cell
 | ||
|             |  A dictionary that allows customisation of the #[code Doc]'s
 | ||
|             |  properties.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code user_token_hooks]
 | ||
|         +cell dict
 | ||
|         +cell
 | ||
|             |  A dictionary that allows customisation of properties of
 | ||
|             |  #[code Token] children.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code user_span_hooks]
 | ||
|         +cell dict
 | ||
|         +cell
 | ||
|             |  A dictionary that allows customisation of properties of
 | ||
|             |  #[code Span] children.
 | ||
| 
 | ||
|     +row
 | ||
|         +cell #[code _]
 | ||
|         +cell #[code Underscore]
 | ||
|         +cell
 | ||
|             |  User space for adding custom
 | ||
|             |  #[+a("/usage/processing-pipelines#custom-components-attributes") attribute extensions].
 |