mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			175 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			175 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| # coding: utf8
 | |
| 
 | |
| """Example of training spaCy's entity linker, starting off with a predefined
 | |
| knowledge base and corresponding vocab, and a blank English model.
 | |
| 
 | |
| For more details, see the documentation:
 | |
| * Training: https://spacy.io/usage/training
 | |
| * Entity Linking: https://spacy.io/usage/linguistic-features#entity-linking
 | |
| 
 | |
| Compatible with: spaCy v2.2.4
 | |
| Last tested with: v2.2.4
 | |
| """
 | |
| from __future__ import unicode_literals, print_function
 | |
| 
 | |
| import plac
 | |
| import random
 | |
| from pathlib import Path
 | |
| 
 | |
| from spacy.vocab import Vocab
 | |
| import spacy
 | |
| from spacy.kb import KnowledgeBase
 | |
| from spacy.pipeline import EntityRuler
 | |
| from spacy.util import minibatch, compounding
 | |
| 
 | |
| 
 | |
| def sample_train_data():
 | |
|     train_data = []
 | |
| 
 | |
|     # Q2146908 (Russ Cochran): American golfer
 | |
|     # Q7381115 (Russ Cochran): publisher
 | |
| 
 | |
|     text_1 = "Russ Cochran his reprints include EC Comics."
 | |
|     dict_1 = {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}}
 | |
|     train_data.append((text_1, {"links": dict_1}))
 | |
| 
 | |
|     text_2 = "Russ Cochran has been publishing comic art."
 | |
|     dict_2 = {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}}
 | |
|     train_data.append((text_2, {"links": dict_2}))
 | |
| 
 | |
|     text_3 = "Russ Cochran captured his first major title with his son as caddie."
 | |
|     dict_3 = {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}}
 | |
|     train_data.append((text_3, {"links": dict_3}))
 | |
| 
 | |
|     text_4 = "Russ Cochran was a member of University of Kentucky's golf team."
 | |
|     dict_4 = {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}}
 | |
|     train_data.append((text_4, {"links": dict_4}))
 | |
| 
 | |
|     return train_data
 | |
| 
 | |
| 
 | |
| # training data
 | |
| TRAIN_DATA = sample_train_data()
 | |
| 
 | |
| 
 | |
| @plac.annotations(
 | |
|     kb_path=("Path to the knowledge base", "positional", None, Path),
 | |
|     vocab_path=("Path to the vocab for the kb", "positional", None, Path),
 | |
|     output_dir=("Optional output directory", "option", "o", Path),
 | |
|     n_iter=("Number of training iterations", "option", "n", int),
 | |
| )
 | |
| def main(kb_path, vocab_path=None, output_dir=None, n_iter=50):
 | |
|     """Create a blank model with the specified vocab, set up the pipeline and train the entity linker.
 | |
|     The `vocab` should be the one used during creation of the KB."""
 | |
|     vocab = Vocab().from_disk(vocab_path)
 | |
|     # create blank English model with correct vocab
 | |
|     nlp = spacy.blank("en", vocab=vocab)
 | |
|     nlp.vocab.vectors.name = "nel_vectors"
 | |
|     print("Created blank 'en' model with vocab from '%s'" % vocab_path)
 | |
| 
 | |
|     # Add a sentencizer component. Alternatively, add a dependency parser for higher accuracy.
 | |
|     nlp.add_pipe(nlp.create_pipe("sentencizer"))
 | |
| 
 | |
|     # Add a custom component to recognize "Russ Cochran" as an entity for the example training data.
 | |
|     # Note that in a realistic application, an actual NER algorithm should be used instead.
 | |
|     ruler = EntityRuler(nlp)
 | |
|     patterns = [
 | |
|         {"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}
 | |
|     ]
 | |
|     ruler.add_patterns(patterns)
 | |
|     nlp.add_pipe(ruler)
 | |
| 
 | |
|     # Create the Entity Linker component and add it to the pipeline.
 | |
|     if "entity_linker" not in nlp.pipe_names:
 | |
|         kb = KnowledgeBase(vocab=nlp.vocab)
 | |
|         kb.load_bulk(kb_path)
 | |
|         print("Loaded Knowledge Base from '%s'" % kb_path)
 | |
| 
 | |
|         # use only the predicted EL score and not the prior probability (for demo purposes)
 | |
|         cfg = {"kb": kb, "incl_prior": False}
 | |
|         entity_linker = nlp.create_pipe("entity_linker", cfg)
 | |
|         nlp.add_pipe(entity_linker, last=True)
 | |
| 
 | |
|     # Convert the texts to docs to make sure we have doc.ents set for the training examples.
 | |
|     # Also ensure that the annotated examples correspond to known identifiers in the knowledge base.
 | |
|     kb_ids = nlp.get_pipe("entity_linker").kb.get_entity_strings()
 | |
|     TRAIN_DOCS = []
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         with nlp.select_pipes(disable="entity_linker"):
 | |
|             doc = nlp(text)
 | |
|         annotation_clean = annotation
 | |
|         for offset, kb_id_dict in annotation["links"].items():
 | |
|             new_dict = {}
 | |
|             for kb_id, value in kb_id_dict.items():
 | |
|                 if kb_id in kb_ids:
 | |
|                     new_dict[kb_id] = value
 | |
|                 else:
 | |
|                     print(
 | |
|                         "Removed", kb_id, "from training because it is not in the KB."
 | |
|                     )
 | |
|             annotation_clean["links"][offset] = new_dict
 | |
|         TRAIN_DOCS.append((doc, annotation_clean))
 | |
| 
 | |
|     with nlp.select_pipes(enable="entity_linker"):  # only train entity linker
 | |
|         # reset and initialize the weights randomly
 | |
|         optimizer = nlp.begin_training()
 | |
| 
 | |
|         for itn in range(n_iter):
 | |
|             random.shuffle(TRAIN_DOCS)
 | |
|             losses = {}
 | |
|             # batch up the examples using spaCy's minibatch
 | |
|             batches = minibatch(TRAIN_DOCS, size=compounding(4.0, 32.0, 1.001))
 | |
|             for batch in batches:
 | |
|                 nlp.update(
 | |
|                     batch,
 | |
|                     drop=0.2,  # dropout - make it harder to memorise data
 | |
|                     losses=losses,
 | |
|                     sgd=optimizer,
 | |
|                 )
 | |
|             print(itn, "Losses", losses)
 | |
| 
 | |
|     # test the trained model
 | |
|     _apply_model(nlp)
 | |
| 
 | |
|     # save model to output directory
 | |
|     if output_dir is not None:
 | |
|         output_dir = Path(output_dir)
 | |
|         if not output_dir.exists():
 | |
|             output_dir.mkdir()
 | |
|         nlp.to_disk(output_dir)
 | |
|         print()
 | |
|         print("Saved model to", output_dir)
 | |
| 
 | |
|         # test the saved model
 | |
|         print("Loading from", output_dir)
 | |
|         nlp2 = spacy.load(output_dir)
 | |
|         _apply_model(nlp2)
 | |
| 
 | |
| 
 | |
| def _apply_model(nlp):
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         # apply the entity linker which will now make predictions for the 'Russ Cochran' entities
 | |
|         doc = nlp(text)
 | |
|         print()
 | |
|         print("Entities", [(ent.text, ent.label_, ent.kb_id_) for ent in doc.ents])
 | |
|         print("Tokens", [(t.text, t.ent_type_, t.ent_kb_id_) for t in doc])
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     plac.call(main)
 | |
| 
 | |
|     # Expected output (can be shuffled):
 | |
| 
 | |
|     # Entities[('Russ Cochran', 'PERSON', 'Q7381115')]
 | |
|     # Tokens[('Russ', 'PERSON', 'Q7381115'), ('Cochran', 'PERSON', 'Q7381115'), ("his", '', ''), ('reprints', '', ''), ('include', '', ''), ('The', '', ''), ('Complete', '', ''), ('EC', '', ''), ('Library', '', ''), ('.', '', '')]
 | |
| 
 | |
|     # Entities[('Russ Cochran', 'PERSON', 'Q7381115')]
 | |
|     # Tokens[('Russ', 'PERSON', 'Q7381115'), ('Cochran', 'PERSON', 'Q7381115'), ('has', '', ''), ('been', '', ''), ('publishing', '', ''), ('comic', '', ''), ('art', '', ''), ('.', '', '')]
 | |
| 
 | |
|     # Entities[('Russ Cochran', 'PERSON', 'Q2146908')]
 | |
|     # Tokens[('Russ', 'PERSON', 'Q2146908'), ('Cochran', 'PERSON', 'Q2146908'), ('captured', '', ''), ('his', '', ''), ('first', '', ''), ('major', '', ''), ('title', '', ''), ('with', '', ''), ('his', '', ''), ('son', '', ''), ('as', '', ''), ('caddie', '', ''), ('.', '', '')]
 | |
| 
 | |
|     # Entities[('Russ Cochran', 'PERSON', 'Q2146908')]
 | |
|     # Tokens[('Russ', 'PERSON', 'Q2146908'), ('Cochran', 'PERSON', 'Q2146908'), ('was', '', ''), ('a', '', ''), ('member', '', ''), ('of', '', ''), ('University', '', ''), ('of', '', ''), ('Kentucky', '', ''), ("'s", '', ''), ('golf', '', ''), ('team', '', ''), ('.', '', '')]
 |