mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* `Language.pipe()`: Serialize `Doc` objects to bytes when using multiprocessing to avoid pickling overhead * `Doc.to_dict()`: Serialize `_context` attribute (keeping in line with `(un)pickle_doc()` * Correct type annotations * Fix typo * `Doc`: Do not serialize `_context` * `Language.pipe`: Send context objects to child processes, Simplify `as_tuples` handling * Fix type annotation * `Language.pipe`: Simplify `as_tuple` multiprocessor handling * Cleanup code, fix typos * MyPy fixes * Move doc preparation function into `_multiprocessing_pipe` Whitespace changes * Remove superfluous comma * Rename `prepare_doc` to `prepare_input` * Update spacy/errors.py * Undo renaming for error Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
		
			
				
	
	
		
			55 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			55 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from spacy.language import Language
 | |
| from spacy.compat import pickle
 | |
| 
 | |
| 
 | |
| def test_pickle_single_doc():
 | |
|     nlp = Language()
 | |
|     doc = nlp("pickle roundtrip")
 | |
|     data = pickle.dumps(doc, 1)
 | |
|     doc2 = pickle.loads(data)
 | |
|     assert doc2.text == "pickle roundtrip"
 | |
| 
 | |
| 
 | |
| def test_list_of_docs_pickles_efficiently():
 | |
|     nlp = Language()
 | |
|     for i in range(10000):
 | |
|         _ = nlp.vocab[str(i)]  # noqa: F841
 | |
|     one_pickled = pickle.dumps(nlp("0"), -1)
 | |
|     docs = list(nlp.pipe(str(i) for i in range(100)))
 | |
|     many_pickled = pickle.dumps(docs, -1)
 | |
|     assert len(many_pickled) < (len(one_pickled) * 2)
 | |
|     many_unpickled = pickle.loads(many_pickled)
 | |
|     assert many_unpickled[0].text == "0"
 | |
|     assert many_unpickled[-1].text == "99"
 | |
|     assert len(many_unpickled) == 100
 | |
| 
 | |
| 
 | |
| def test_user_data_from_disk():
 | |
|     nlp = Language()
 | |
|     doc = nlp("Hello")
 | |
|     doc.user_data[(0, 1)] = False
 | |
|     b = doc.to_bytes()
 | |
|     doc2 = doc.__class__(doc.vocab).from_bytes(b)
 | |
|     assert doc2.user_data[(0, 1)] is False
 | |
| 
 | |
| 
 | |
| def test_user_data_unpickles():
 | |
|     nlp = Language()
 | |
|     doc = nlp("Hello")
 | |
|     doc.user_data[(0, 1)] = False
 | |
|     b = pickle.dumps(doc)
 | |
|     doc2 = pickle.loads(b)
 | |
|     assert doc2.user_data[(0, 1)] is False
 | |
| 
 | |
| 
 | |
| def test_hooks_unpickle():
 | |
|     def inner_func(d1, d2):
 | |
|         return "hello!"
 | |
| 
 | |
|     nlp = Language()
 | |
|     doc = nlp("Hello")
 | |
|     doc.user_hooks["similarity"] = inner_func
 | |
|     b = pickle.dumps(doc)
 | |
|     doc2 = pickle.loads(b)
 | |
|     assert doc2.similarity(None) == "hello!"
 |