mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* Add SpanRuler component Add a `SpanRuler` component similar to `EntityRuler` that saves a list of matched spans to `Doc.spans[spans_key]`. The matches from the token and phrase matchers are deduplicated and sorted before assignment but are not otherwise filtered. * Update spacy/pipeline/span_ruler.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix cast * Add self.key property * Use number of patterns as length * Remove patterns kwarg from init * Update spacy/tests/pipeline/test_span_ruler.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Add options for spans filter and setting to ents * Add `spans_filter` option as a registered function' * Make `spans_key` optional and if `None`, set to `doc.ents` instead of `doc.spans[spans_key]`. * Update and generalize tests * Add test for setting doc.ents, fix key property type * Fix typing * Allow independent doc.spans and doc.ents * If `spans_key` is set, set `doc.spans` with `spans_filter`. * If `annotate_ents` is set, set `doc.ents` with `ents_fitler`. * Use `util.filter_spans` by default as `ents_filter`. * Use a custom warning if the filter does not work for `doc.ents`. * Enable use of SpanC.id in Span * Support id in SpanRuler as Span.id * Update types * `id` can only be provided as string (already by `PatternType` definition) * Update all uses of Span.id/ent_id in Doc * Rename Span id kwarg to span_id * Update types and docs * Add ents filter to mimic EntityRuler overwrite_ents * Refactor `ents_filter` to take `entities, spans` args for more filtering options * Give registered filters more descriptive names * Allow registered `filter_spans` filter (`spacy.first_longest_spans_filter.v1`) to take any number of `Iterable[Span]` objects as args so it can be used for spans filter or ents filter * Implement future entity ruler as span ruler Implement a compatible `entity_ruler` as `future_entity_ruler` using `SpanRuler` as the underlying component: * Add `sort_key` and `sort_reverse` to allow the sorting behavior to be customized. (Necessary for the same sorting/filtering as in `EntityRuler`.) * Implement `overwrite_overlapping_ents_filter` and `preserve_existing_ents_filter` to support `EntityRuler.overwrite_ents` settings. * Add `remove_by_id` to support `EntityRuler.remove` functionality. * Refactor `entity_ruler` tests to parametrize all tests to test both `entity_ruler` and `future_entity_ruler` * Implement `SpanRuler.token_patterns` and `SpanRuler.phrase_patterns` properties. Additional changes: * Move all config settings to top-level attributes to avoid duplicating settings in the config vs. `span_ruler/cfg`. (Also avoids a lot of casting.) * Format * Fix filter make method name * Refactor to use same error for removing by label or ID * Also provide existing spans to spans filter * Support ids property * Remove token_patterns and phrase_patterns * Update docstrings * Add span ruler docs * Fix types * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Move sorting into filters * Check for all tokens in seen tokens in entity ruler filters * Remove registered sort key * Set Token.ent_id in a backwards-compatible way in Doc.set_ents * Remove sort options from API docs * Update docstrings * Rename entity ruler filters * Fix and parameterize scoring * Add id to Span API docs * Fix typo in API docs * Include explicit labeled=True for scorer Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
		
			
				
	
	
		
			683 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			683 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| import numpy
 | |
| from numpy.testing import assert_array_equal
 | |
| 
 | |
| from spacy.attrs import ORTH, LENGTH
 | |
| from spacy.lang.en import English
 | |
| from spacy.tokens import Doc, Span, Token
 | |
| from spacy.vocab import Vocab
 | |
| from spacy.util import filter_spans
 | |
| from thinc.api import get_current_ops
 | |
| 
 | |
| from ..util import add_vecs_to_vocab
 | |
| from .test_underscore import clean_underscore  # noqa: F401
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def doc(en_tokenizer):
 | |
|     # fmt: off
 | |
|     text = "This is a sentence. This is another sentence. And a third."
 | |
|     heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6, 12, 12, 12, 12]
 | |
|     deps = ["nsubj", "ROOT", "det", "attr", "punct", "nsubj", "ROOT", "det",
 | |
|             "attr", "punct", "ROOT", "det", "npadvmod", "punct"]
 | |
|     ents = ["O", "O", "B-ENT", "I-ENT", "I-ENT", "I-ENT", "I-ENT", "O", "O",
 | |
|             "O", "O", "O", "O", "O"]
 | |
|     # fmt: on
 | |
|     tokens = en_tokenizer(text)
 | |
|     lemmas = [t.text for t in tokens]  # this is not correct, just a placeholder
 | |
|     spaces = [bool(t.whitespace_) for t in tokens]
 | |
|     return Doc(
 | |
|         tokens.vocab,
 | |
|         words=[t.text for t in tokens],
 | |
|         spaces=spaces,
 | |
|         heads=heads,
 | |
|         deps=deps,
 | |
|         ents=ents,
 | |
|         lemmas=lemmas,
 | |
|     )
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def doc_not_parsed(en_tokenizer):
 | |
|     text = "This is a sentence. This is another sentence. And a third."
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens])
 | |
|     return doc
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(1537)
 | |
| def test_issue1537():
 | |
|     """Test that Span.as_doc() doesn't segfault."""
 | |
|     string = "The sky is blue . The man is pink . The dog is purple ."
 | |
|     doc = Doc(Vocab(), words=string.split())
 | |
|     doc[0].sent_start = True
 | |
|     for word in doc[1:]:
 | |
|         if word.nbor(-1).text == ".":
 | |
|             word.sent_start = True
 | |
|         else:
 | |
|             word.sent_start = False
 | |
|     sents = list(doc.sents)
 | |
|     sent0 = sents[0].as_doc()
 | |
|     sent1 = sents[1].as_doc()
 | |
|     assert isinstance(sent0, Doc)
 | |
|     assert isinstance(sent1, Doc)
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(1612)
 | |
| def test_issue1612(en_tokenizer):
 | |
|     """Test that span.orth_ is identical to span.text"""
 | |
|     doc = en_tokenizer("The black cat purrs.")
 | |
|     span = doc[1:3]
 | |
|     assert span.orth_ == span.text
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(3199)
 | |
| def test_issue3199():
 | |
|     """Test that Span.noun_chunks works correctly if no noun chunks iterator
 | |
|     is available. To make this test future-proof, we're constructing a Doc
 | |
|     with a new Vocab here and a parse tree to make sure the noun chunks run.
 | |
|     """
 | |
|     words = ["This", "is", "a", "sentence"]
 | |
|     doc = Doc(Vocab(), words=words, heads=[0] * len(words), deps=["dep"] * len(words))
 | |
|     with pytest.raises(NotImplementedError):
 | |
|         list(doc[0:3].noun_chunks)
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(5152)
 | |
| def test_issue5152():
 | |
|     # Test that the comparison between a Span and a Token, goes well
 | |
|     # There was a bug when the number of tokens in the span equaled the number of characters in the token (!)
 | |
|     nlp = English()
 | |
|     text = nlp("Talk about being boring!")
 | |
|     text_var = nlp("Talk of being boring!")
 | |
|     y = nlp("Let")
 | |
|     span = text[0:3]  # Talk about being
 | |
|     span_2 = text[0:3]  # Talk about being
 | |
|     span_3 = text_var[0:3]  # Talk of being
 | |
|     token = y[0]  # Let
 | |
|     with pytest.warns(UserWarning):
 | |
|         assert span.similarity(token) == 0.0
 | |
|     assert span.similarity(span_2) == 1.0
 | |
|     with pytest.warns(UserWarning):
 | |
|         assert span_2.similarity(span_3) < 1.0
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(6755)
 | |
| def test_issue6755(en_tokenizer):
 | |
|     doc = en_tokenizer("This is a magnificent sentence.")
 | |
|     span = doc[:0]
 | |
|     assert span.text_with_ws == ""
 | |
|     assert span.text == ""
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "sentence, start_idx,end_idx,label",
 | |
|     [("Welcome to Mumbai, my friend", 11, 17, "GPE")],
 | |
| )
 | |
| @pytest.mark.issue(6815)
 | |
| def test_issue6815_1(sentence, start_idx, end_idx, label):
 | |
|     nlp = English()
 | |
|     doc = nlp(sentence)
 | |
|     span = doc[:].char_span(start_idx, end_idx, label=label)
 | |
|     assert span.label_ == label
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "sentence, start_idx,end_idx,kb_id", [("Welcome to Mumbai, my friend", 11, 17, 5)]
 | |
| )
 | |
| @pytest.mark.issue(6815)
 | |
| def test_issue6815_2(sentence, start_idx, end_idx, kb_id):
 | |
|     nlp = English()
 | |
|     doc = nlp(sentence)
 | |
|     span = doc[:].char_span(start_idx, end_idx, kb_id=kb_id)
 | |
|     assert span.kb_id == kb_id
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "sentence, start_idx,end_idx,vector",
 | |
|     [("Welcome to Mumbai, my friend", 11, 17, numpy.array([0.1, 0.2, 0.3]))],
 | |
| )
 | |
| @pytest.mark.issue(6815)
 | |
| def test_issue6815_3(sentence, start_idx, end_idx, vector):
 | |
|     nlp = English()
 | |
|     doc = nlp(sentence)
 | |
|     span = doc[:].char_span(start_idx, end_idx, vector=vector)
 | |
|     assert (span.vector == vector).all()
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "i_sent,i,j,text",
 | |
|     [
 | |
|         (0, 0, len("This is a"), "This is a"),
 | |
|         (1, 0, len("This is another"), "This is another"),
 | |
|         (2, len("And "), len("And ") + len("a third"), "a third"),
 | |
|         (0, 1, 2, None),
 | |
|     ],
 | |
| )
 | |
| def test_char_span(doc, i_sent, i, j, text):
 | |
|     sents = list(doc.sents)
 | |
|     span = sents[i_sent].char_span(i, j)
 | |
|     if not text:
 | |
|         assert not span
 | |
|     else:
 | |
|         assert span.text == text
 | |
| 
 | |
| 
 | |
| def test_spans_sent_spans(doc):
 | |
|     sents = list(doc.sents)
 | |
|     assert sents[0].start == 0
 | |
|     assert sents[0].end == 5
 | |
|     assert len(sents) == 3
 | |
|     assert sum(len(sent) for sent in sents) == len(doc)
 | |
| 
 | |
| 
 | |
| def test_spans_root(doc):
 | |
|     span = doc[2:4]
 | |
|     assert len(span) == 2
 | |
|     assert span.text == "a sentence"
 | |
|     assert span.root.text == "sentence"
 | |
|     assert span.root.head.text == "is"
 | |
| 
 | |
| 
 | |
| def test_spans_string_fn(doc):
 | |
|     span = doc[0:4]
 | |
|     assert len(span) == 4
 | |
|     assert span.text == "This is a sentence"
 | |
| 
 | |
| 
 | |
| def test_spans_root2(en_tokenizer):
 | |
|     text = "through North and South Carolina"
 | |
|     heads = [0, 4, 1, 1, 0]
 | |
|     deps = ["dep"] * len(heads)
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | |
|     assert doc[-2:].root.text == "Carolina"
 | |
| 
 | |
| 
 | |
| def test_spans_span_sent(doc, doc_not_parsed):
 | |
|     """Test span.sent property"""
 | |
|     assert len(list(doc.sents))
 | |
|     assert doc[:2].sent.root.text == "is"
 | |
|     assert doc[:2].sent.text == "This is a sentence."
 | |
|     assert doc[6:7].sent.root.left_edge.text == "This"
 | |
|     assert doc[0 : len(doc)].sent == list(doc.sents)[0]
 | |
|     assert list(doc[0 : len(doc)].sents) == list(doc.sents)
 | |
| 
 | |
|     with pytest.raises(ValueError):
 | |
|         doc_not_parsed[:2].sent
 | |
| 
 | |
|     # test on manual sbd
 | |
|     doc_not_parsed[0].is_sent_start = True
 | |
|     doc_not_parsed[5].is_sent_start = True
 | |
|     assert doc_not_parsed[1:3].sent == doc_not_parsed[0:5]
 | |
|     assert doc_not_parsed[10:14].sent == doc_not_parsed[5:]
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "start,end,expected_sentence",
 | |
|     [
 | |
|         (0, 14, "This is"),  # Entire doc
 | |
|         (1, 4, "This is"),  # Overlapping with 2 sentences
 | |
|         (0, 2, "This is"),  # Beginning of the Doc. Full sentence
 | |
|         (0, 1, "This is"),  # Beginning of the Doc. Part of a sentence
 | |
|         (10, 14, "And a"),  # End of the Doc. Overlapping with 2 senteces
 | |
|         (12, 14, "third."),  # End of the Doc. Full sentence
 | |
|         (1, 1, "This is"),  # Empty Span
 | |
|     ],
 | |
| )
 | |
| def test_spans_span_sent_user_hooks(doc, start, end, expected_sentence):
 | |
| 
 | |
|     # Doc-level sents hook
 | |
|     def user_hook(doc):
 | |
|         return [doc[ii : ii + 2] for ii in range(0, len(doc), 2)]
 | |
| 
 | |
|     doc.user_hooks["sents"] = user_hook
 | |
| 
 | |
|     # Make sure doc-level sents hook works
 | |
|     assert doc[start:end].sent.text == expected_sentence
 | |
| 
 | |
|     # Span-level sent hook
 | |
|     doc.user_span_hooks["sent"] = lambda x: x
 | |
|     # Now, span=level sent hook overrides the doc-level sents hook
 | |
|     assert doc[start:end].sent == doc[start:end]
 | |
| 
 | |
| 
 | |
| def test_spans_lca_matrix(en_tokenizer):
 | |
|     """Test span's lca matrix generation"""
 | |
|     tokens = en_tokenizer("the lazy dog slept")
 | |
|     doc = Doc(
 | |
|         tokens.vocab,
 | |
|         words=[t.text for t in tokens],
 | |
|         heads=[2, 2, 3, 3],
 | |
|         deps=["dep"] * 4,
 | |
|     )
 | |
|     lca = doc[:2].get_lca_matrix()
 | |
|     assert lca.shape == (2, 2)
 | |
|     assert lca[0, 0] == 0  # the & the -> the
 | |
|     assert lca[0, 1] == -1  # the & lazy -> dog (out of span)
 | |
|     assert lca[1, 0] == -1  # lazy & the -> dog (out of span)
 | |
|     assert lca[1, 1] == 1  # lazy & lazy -> lazy
 | |
| 
 | |
|     lca = doc[1:].get_lca_matrix()
 | |
|     assert lca.shape == (3, 3)
 | |
|     assert lca[0, 0] == 0  # lazy & lazy -> lazy
 | |
|     assert lca[0, 1] == 1  # lazy & dog -> dog
 | |
|     assert lca[0, 2] == 2  # lazy & slept -> slept
 | |
| 
 | |
|     lca = doc[2:].get_lca_matrix()
 | |
|     assert lca.shape == (2, 2)
 | |
|     assert lca[0, 0] == 0  # dog & dog -> dog
 | |
|     assert lca[0, 1] == 1  # dog & slept -> slept
 | |
|     assert lca[1, 0] == 1  # slept & dog -> slept
 | |
|     assert lca[1, 1] == 1  # slept & slept -> slept
 | |
| 
 | |
|     # example from Span API docs
 | |
|     tokens = en_tokenizer("I like New York in Autumn")
 | |
|     doc = Doc(
 | |
|         tokens.vocab,
 | |
|         words=[t.text for t in tokens],
 | |
|         heads=[1, 1, 3, 1, 3, 4],
 | |
|         deps=["dep"] * len(tokens),
 | |
|     )
 | |
|     lca = doc[1:4].get_lca_matrix()
 | |
|     assert_array_equal(lca, numpy.asarray([[0, 0, 0], [0, 1, 2], [0, 2, 2]]))
 | |
| 
 | |
| 
 | |
| def test_span_similarity_match():
 | |
|     doc = Doc(Vocab(), words=["a", "b", "a", "b"])
 | |
|     span1 = doc[:2]
 | |
|     span2 = doc[2:]
 | |
|     with pytest.warns(UserWarning):
 | |
|         assert span1.similarity(span2) == 1.0
 | |
|         assert span1.similarity(doc) == 0.0
 | |
|         assert span1[:1].similarity(doc.vocab["a"]) == 1.0
 | |
| 
 | |
| 
 | |
| def test_spans_default_sentiment(en_tokenizer):
 | |
|     """Test span.sentiment property's default averaging behaviour"""
 | |
|     text = "good stuff bad stuff"
 | |
|     tokens = en_tokenizer(text)
 | |
|     tokens.vocab[tokens[0].text].sentiment = 3.0
 | |
|     tokens.vocab[tokens[2].text].sentiment = -2.0
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens])
 | |
|     assert doc[:2].sentiment == 3.0 / 2
 | |
|     assert doc[-2:].sentiment == -2.0 / 2
 | |
|     assert doc[:-1].sentiment == (3.0 + -2) / 3.0
 | |
| 
 | |
| 
 | |
| def test_spans_override_sentiment(en_tokenizer):
 | |
|     """Test span.sentiment property's default averaging behaviour"""
 | |
|     text = "good stuff bad stuff"
 | |
|     tokens = en_tokenizer(text)
 | |
|     tokens.vocab[tokens[0].text].sentiment = 3.0
 | |
|     tokens.vocab[tokens[2].text].sentiment = -2.0
 | |
|     doc = Doc(tokens.vocab, words=[t.text for t in tokens])
 | |
|     doc.user_span_hooks["sentiment"] = lambda span: 10.0
 | |
|     assert doc[:2].sentiment == 10.0
 | |
|     assert doc[-2:].sentiment == 10.0
 | |
|     assert doc[:-1].sentiment == 10.0
 | |
| 
 | |
| 
 | |
| def test_spans_are_hashable(en_tokenizer):
 | |
|     """Test spans can be hashed."""
 | |
|     text = "good stuff bad stuff"
 | |
|     tokens = en_tokenizer(text)
 | |
|     span1 = tokens[:2]
 | |
|     span2 = tokens[2:4]
 | |
|     assert hash(span1) != hash(span2)
 | |
|     span3 = tokens[0:2]
 | |
|     assert hash(span3) == hash(span1)
 | |
| 
 | |
| 
 | |
| def test_spans_by_character(doc):
 | |
|     span1 = doc[1:-2]
 | |
| 
 | |
|     # default and specified alignment mode "strict"
 | |
|     span2 = doc.char_span(span1.start_char, span1.end_char, label="GPE")
 | |
|     assert span1.start_char == span2.start_char
 | |
|     assert span1.end_char == span2.end_char
 | |
|     assert span2.label_ == "GPE"
 | |
| 
 | |
|     span2 = doc.char_span(
 | |
|         span1.start_char, span1.end_char, label="GPE", alignment_mode="strict"
 | |
|     )
 | |
|     assert span1.start_char == span2.start_char
 | |
|     assert span1.end_char == span2.end_char
 | |
|     assert span2.label_ == "GPE"
 | |
| 
 | |
|     # alignment mode "contract"
 | |
|     span2 = doc.char_span(
 | |
|         span1.start_char - 3, span1.end_char, label="GPE", alignment_mode="contract"
 | |
|     )
 | |
|     assert span1.start_char == span2.start_char
 | |
|     assert span1.end_char == span2.end_char
 | |
|     assert span2.label_ == "GPE"
 | |
| 
 | |
|     # alignment mode "expand"
 | |
|     span2 = doc.char_span(
 | |
|         span1.start_char + 1, span1.end_char, label="GPE", alignment_mode="expand"
 | |
|     )
 | |
|     assert span1.start_char == span2.start_char
 | |
|     assert span1.end_char == span2.end_char
 | |
|     assert span2.label_ == "GPE"
 | |
| 
 | |
|     # unsupported alignment mode
 | |
|     with pytest.raises(ValueError):
 | |
|         span2 = doc.char_span(
 | |
|             span1.start_char + 1, span1.end_char, label="GPE", alignment_mode="unk"
 | |
|         )
 | |
| 
 | |
| 
 | |
| def test_span_to_array(doc):
 | |
|     span = doc[1:-2]
 | |
|     arr = span.to_array([ORTH, LENGTH])
 | |
|     assert arr.shape == (len(span), 2)
 | |
|     assert arr[0, 0] == span[0].orth
 | |
|     assert arr[0, 1] == len(span[0])
 | |
| 
 | |
| 
 | |
| def test_span_as_doc(doc):
 | |
|     span = doc[4:10]
 | |
|     span_doc = span.as_doc()
 | |
|     assert span.text == span_doc.text.strip()
 | |
|     assert isinstance(span_doc, doc.__class__)
 | |
|     assert span_doc is not doc
 | |
|     assert span_doc[0].idx == 0
 | |
| 
 | |
|     # partial initial entity is removed
 | |
|     assert len(span_doc.ents) == 0
 | |
| 
 | |
|     # full entity is preserved
 | |
|     span_doc = doc[2:10].as_doc()
 | |
|     assert len(span_doc.ents) == 1
 | |
| 
 | |
|     # partial final entity is removed
 | |
|     span_doc = doc[0:5].as_doc()
 | |
|     assert len(span_doc.ents) == 0
 | |
| 
 | |
| 
 | |
| @pytest.mark.usefixtures("clean_underscore")
 | |
| def test_span_as_doc_user_data(doc):
 | |
|     """Test that the user_data can be preserved (but not by default)."""
 | |
|     my_key = "my_info"
 | |
|     my_value = 342
 | |
|     doc.user_data[my_key] = my_value
 | |
|     Token.set_extension("is_x", default=False)
 | |
|     doc[7]._.is_x = True
 | |
| 
 | |
|     span = doc[4:10]
 | |
|     span_doc_with = span.as_doc(copy_user_data=True)
 | |
|     span_doc_without = span.as_doc()
 | |
| 
 | |
|     assert doc.user_data.get(my_key, None) is my_value
 | |
|     assert span_doc_with.user_data.get(my_key, None) is my_value
 | |
|     assert span_doc_without.user_data.get(my_key, None) is None
 | |
|     for i in range(len(span_doc_with)):
 | |
|         if i != 3:
 | |
|             assert span_doc_with[i]._.is_x is False
 | |
|         else:
 | |
|             assert span_doc_with[i]._.is_x is True
 | |
|     assert not any([t._.is_x for t in span_doc_without])
 | |
| 
 | |
| 
 | |
| def test_span_string_label_kb_id(doc):
 | |
|     span = Span(doc, 0, 1, label="hello", kb_id="Q342")
 | |
|     assert span.label_ == "hello"
 | |
|     assert span.label == doc.vocab.strings["hello"]
 | |
|     assert span.kb_id_ == "Q342"
 | |
|     assert span.kb_id == doc.vocab.strings["Q342"]
 | |
| 
 | |
| 
 | |
| def test_span_string_label_id(doc):
 | |
|     span = Span(doc, 0, 1, label="hello", span_id="Q342")
 | |
|     assert span.label_ == "hello"
 | |
|     assert span.label == doc.vocab.strings["hello"]
 | |
|     assert span.id_ == "Q342"
 | |
|     assert span.id == doc.vocab.strings["Q342"]
 | |
| 
 | |
| 
 | |
| def test_span_attrs_writable(doc):
 | |
|     span = Span(doc, 0, 1)
 | |
|     span.label_ = "label"
 | |
|     span.kb_id_ = "kb_id"
 | |
|     span.id_ = "id"
 | |
| 
 | |
| 
 | |
| def test_span_ents_property(doc):
 | |
|     doc.ents = [
 | |
|         (doc.vocab.strings["PRODUCT"], 0, 1),
 | |
|         (doc.vocab.strings["PRODUCT"], 7, 8),
 | |
|         (doc.vocab.strings["PRODUCT"], 11, 14),
 | |
|     ]
 | |
|     assert len(list(doc.ents)) == 3
 | |
|     sentences = list(doc.sents)
 | |
|     assert len(sentences) == 3
 | |
|     assert len(sentences[0].ents) == 1
 | |
|     # First sentence, also tests start of sentence
 | |
|     assert sentences[0].ents[0].text == "This"
 | |
|     assert sentences[0].ents[0].label_ == "PRODUCT"
 | |
|     assert sentences[0].ents[0].start == 0
 | |
|     assert sentences[0].ents[0].end == 1
 | |
|     # Second sentence
 | |
|     assert len(sentences[1].ents) == 1
 | |
|     assert sentences[1].ents[0].text == "another"
 | |
|     assert sentences[1].ents[0].label_ == "PRODUCT"
 | |
|     assert sentences[1].ents[0].start == 7
 | |
|     assert sentences[1].ents[0].end == 8
 | |
|     # Third sentence ents, Also tests end of sentence
 | |
|     assert sentences[2].ents[0].text == "a third."
 | |
|     assert sentences[2].ents[0].label_ == "PRODUCT"
 | |
|     assert sentences[2].ents[0].start == 11
 | |
|     assert sentences[2].ents[0].end == 14
 | |
| 
 | |
| 
 | |
| def test_filter_spans(doc):
 | |
|     # Test filtering duplicates
 | |
|     spans = [doc[1:4], doc[6:8], doc[1:4], doc[10:14]]
 | |
|     filtered = filter_spans(spans)
 | |
|     assert len(filtered) == 3
 | |
|     assert filtered[0].start == 1 and filtered[0].end == 4
 | |
|     assert filtered[1].start == 6 and filtered[1].end == 8
 | |
|     assert filtered[2].start == 10 and filtered[2].end == 14
 | |
|     # Test filtering overlaps with longest preference
 | |
|     spans = [doc[1:4], doc[1:3], doc[5:10], doc[7:9], doc[1:4]]
 | |
|     filtered = filter_spans(spans)
 | |
|     assert len(filtered) == 2
 | |
|     assert len(filtered[0]) == 3
 | |
|     assert len(filtered[1]) == 5
 | |
|     assert filtered[0].start == 1 and filtered[0].end == 4
 | |
|     assert filtered[1].start == 5 and filtered[1].end == 10
 | |
|     # Test filtering overlaps with earlier preference for identical length
 | |
|     spans = [doc[1:4], doc[2:5], doc[5:10], doc[7:9], doc[1:4]]
 | |
|     filtered = filter_spans(spans)
 | |
|     assert len(filtered) == 2
 | |
|     assert len(filtered[0]) == 3
 | |
|     assert len(filtered[1]) == 5
 | |
|     assert filtered[0].start == 1 and filtered[0].end == 4
 | |
|     assert filtered[1].start == 5 and filtered[1].end == 10
 | |
| 
 | |
| 
 | |
| def test_span_eq_hash(doc, doc_not_parsed):
 | |
|     assert doc[0:2] == doc[0:2]
 | |
|     assert doc[0:2] != doc[1:3]
 | |
|     assert doc[0:2] != doc_not_parsed[0:2]
 | |
|     assert hash(doc[0:2]) == hash(doc[0:2])
 | |
|     assert hash(doc[0:2]) != hash(doc[1:3])
 | |
|     assert hash(doc[0:2]) != hash(doc_not_parsed[0:2])
 | |
| 
 | |
|     # check that an out-of-bounds is not equivalent to the span of the full doc
 | |
|     assert doc[0 : len(doc)] != doc[len(doc) : len(doc) + 1]
 | |
| 
 | |
| 
 | |
| def test_span_boundaries(doc):
 | |
|     start = 1
 | |
|     end = 5
 | |
|     span = doc[start:end]
 | |
|     for i in range(start, end):
 | |
|         assert span[i - start] == doc[i]
 | |
|     with pytest.raises(IndexError):
 | |
|         span[-5]
 | |
|     with pytest.raises(IndexError):
 | |
|         span[5]
 | |
| 
 | |
|     empty_span_0 = doc[0:0]
 | |
|     assert empty_span_0.text == ""
 | |
|     assert empty_span_0.start == 0
 | |
|     assert empty_span_0.end == 0
 | |
|     assert empty_span_0.start_char == 0
 | |
|     assert empty_span_0.end_char == 0
 | |
| 
 | |
|     empty_span_1 = doc[1:1]
 | |
|     assert empty_span_1.text == ""
 | |
|     assert empty_span_1.start == 1
 | |
|     assert empty_span_1.end == 1
 | |
|     assert empty_span_1.start_char == empty_span_1.end_char
 | |
| 
 | |
|     oob_span_start = doc[-len(doc) - 1 : -len(doc) - 10]
 | |
|     assert oob_span_start.text == ""
 | |
|     assert oob_span_start.start == 0
 | |
|     assert oob_span_start.end == 0
 | |
|     assert oob_span_start.start_char == 0
 | |
|     assert oob_span_start.end_char == 0
 | |
| 
 | |
|     oob_span_end = doc[len(doc) + 1 : len(doc) + 10]
 | |
|     assert oob_span_end.text == ""
 | |
|     assert oob_span_end.start == len(doc)
 | |
|     assert oob_span_end.end == len(doc)
 | |
|     assert oob_span_end.start_char == len(doc.text)
 | |
|     assert oob_span_end.end_char == len(doc.text)
 | |
| 
 | |
| 
 | |
| def test_span_lemma(doc):
 | |
|     # span lemmas should have the same number of spaces as the span
 | |
|     sp = doc[1:5]
 | |
|     assert len(sp.text.split(" ")) == len(sp.lemma_.split(" "))
 | |
| 
 | |
| 
 | |
| def test_sent(en_tokenizer):
 | |
|     doc = en_tokenizer("Check span.sent raises error if doc is not sentencized.")
 | |
|     span = doc[1:3]
 | |
|     assert not span.doc.has_annotation("SENT_START")
 | |
|     with pytest.raises(ValueError):
 | |
|         span.sent
 | |
| 
 | |
| 
 | |
| def test_span_with_vectors(doc):
 | |
|     ops = get_current_ops()
 | |
|     prev_vectors = doc.vocab.vectors
 | |
|     vectors = [
 | |
|         ("apple", ops.asarray([1, 2, 3])),
 | |
|         ("orange", ops.asarray([-1, -2, -3])),
 | |
|         ("And", ops.asarray([-1, -1, -1])),
 | |
|         ("juice", ops.asarray([5, 5, 10])),
 | |
|         ("pie", ops.asarray([7, 6.3, 8.9])),
 | |
|     ]
 | |
|     add_vecs_to_vocab(doc.vocab, vectors)
 | |
|     # 0-length span
 | |
|     assert_array_equal(ops.to_numpy(doc[0:0].vector), numpy.zeros((3,)))
 | |
|     # longer span with no vector
 | |
|     assert_array_equal(ops.to_numpy(doc[0:4].vector), numpy.zeros((3,)))
 | |
|     # single-token span with vector
 | |
|     assert_array_equal(ops.to_numpy(doc[10:11].vector), [-1, -1, -1])
 | |
|     doc.vocab.vectors = prev_vectors
 | |
| 
 | |
| 
 | |
| # fmt: off
 | |
| def test_span_comparison(doc):
 | |
| 
 | |
|     # Identical start, end, only differ in label and kb_id
 | |
|     assert Span(doc, 0, 3) == Span(doc, 0, 3)
 | |
|     assert Span(doc, 0, 3, "LABEL") == Span(doc, 0, 3, "LABEL")
 | |
|     assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") == Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
 | |
| 
 | |
|     assert Span(doc, 0, 3) != Span(doc, 0, 3, "LABEL")
 | |
|     assert Span(doc, 0, 3) != Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
 | |
|     assert Span(doc, 0, 3, "LABEL") != Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
 | |
| 
 | |
|     assert Span(doc, 0, 3) <= Span(doc, 0, 3) and Span(doc, 0, 3) >= Span(doc, 0, 3)
 | |
|     assert Span(doc, 0, 3, "LABEL") <= Span(doc, 0, 3, "LABEL") and Span(doc, 0, 3, "LABEL") >= Span(doc, 0, 3, "LABEL")
 | |
|     assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") <= Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
 | |
|     assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") >= Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
 | |
| 
 | |
|     assert (Span(doc, 0, 3) < Span(doc, 0, 3, "", kb_id="KB_ID") < Span(doc, 0, 3, "LABEL") < Span(doc, 0, 3, "LABEL", kb_id="KB_ID"))
 | |
|     assert (Span(doc, 0, 3) <= Span(doc, 0, 3, "", kb_id="KB_ID") <= Span(doc, 0, 3, "LABEL") <= Span(doc, 0, 3, "LABEL", kb_id="KB_ID"))
 | |
| 
 | |
|     assert (Span(doc, 0, 3, "LABEL", kb_id="KB_ID") > Span(doc, 0, 3, "LABEL") > Span(doc, 0, 3, "", kb_id="KB_ID") > Span(doc, 0, 3))
 | |
|     assert (Span(doc, 0, 3, "LABEL", kb_id="KB_ID") >= Span(doc, 0, 3, "LABEL") >= Span(doc, 0, 3, "", kb_id="KB_ID") >= Span(doc, 0, 3))
 | |
| 
 | |
|     # Different end
 | |
|     assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") < Span(doc, 0, 4, "LABEL", kb_id="KB_ID")
 | |
| 
 | |
|     assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") < Span(doc, 0, 4)
 | |
|     assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") <= Span(doc, 0, 4)
 | |
|     assert Span(doc, 0, 4) > Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
 | |
|     assert Span(doc, 0, 4) >= Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
 | |
| 
 | |
|     # Different start
 | |
|     assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") != Span(doc, 1, 3, "LABEL", kb_id="KB_ID")
 | |
| 
 | |
|     assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") < Span(doc, 1, 3)
 | |
|     assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") <= Span(doc, 1, 3)
 | |
|     assert Span(doc, 1, 3) > Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
 | |
|     assert Span(doc, 1, 3) >= Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
 | |
| 
 | |
|     # Different start & different end
 | |
|     assert Span(doc, 0, 4, "LABEL", kb_id="KB_ID") != Span(doc, 1, 3, "LABEL", kb_id="KB_ID")
 | |
| 
 | |
|     assert Span(doc, 0, 4, "LABEL", kb_id="KB_ID") < Span(doc, 1, 3)
 | |
|     assert Span(doc, 0, 4, "LABEL", kb_id="KB_ID") <= Span(doc, 1, 3)
 | |
|     assert Span(doc, 1, 3) > Span(doc, 0, 4, "LABEL", kb_id="KB_ID")
 | |
|     assert Span(doc, 1, 3) >= Span(doc, 0, 4, "LABEL", kb_id="KB_ID")
 | |
| 
 | |
|     # Different id
 | |
|     assert Span(doc, 1, 3, span_id="AAA") < Span(doc, 1, 3, span_id="BBB")
 | |
| # fmt: on
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "start,end,expected_sentences,expected_sentences_with_hook",
 | |
|     [
 | |
|         (0, 14, 3, 7),  # Entire doc
 | |
|         (3, 6, 2, 2),  # Overlapping with 2 sentences
 | |
|         (0, 4, 1, 2),  # Beginning of the Doc. Full sentence
 | |
|         (0, 3, 1, 2),  # Beginning of the Doc. Part of a sentence
 | |
|         (9, 14, 2, 3),  # End of the Doc. Overlapping with 2 senteces
 | |
|         (10, 14, 1, 2),  # End of the Doc. Full sentence
 | |
|         (11, 14, 1, 2),  # End of the Doc. Partial sentence
 | |
|         (0, 0, 1, 1),  # Empty Span
 | |
|     ],
 | |
| )
 | |
| def test_span_sents(doc, start, end, expected_sentences, expected_sentences_with_hook):
 | |
| 
 | |
|     assert len(list(doc[start:end].sents)) == expected_sentences
 | |
| 
 | |
|     def user_hook(doc):
 | |
|         return [doc[ii : ii + 2] for ii in range(0, len(doc), 2)]
 | |
| 
 | |
|     doc.user_hooks["sents"] = user_hook
 | |
| 
 | |
|     assert len(list(doc[start:end].sents)) == expected_sentences_with_hook
 | |
| 
 | |
|     doc.user_span_hooks["sents"] = lambda x: [x]
 | |
| 
 | |
|     assert list(doc[start:end].sents)[0] == doc[start:end]
 | |
|     assert len(list(doc[start:end].sents)) == 1
 | |
| 
 | |
| 
 | |
| def test_span_sents_not_parsed(doc_not_parsed):
 | |
|     with pytest.raises(ValueError):
 | |
|         list(Span(doc_not_parsed, 0, 3).sents)
 | |
| 
 | |
| 
 | |
| def test_span_group_copy(doc):
 | |
|     doc.spans["test"] = [doc[0:1], doc[2:4]]
 | |
|     assert len(doc.spans["test"]) == 2
 | |
|     doc_copy = doc.copy()
 | |
|     # check that the spans were indeed copied
 | |
|     assert len(doc_copy.spans["test"]) == 2
 | |
|     # add a new span to the original doc
 | |
|     doc.spans["test"].append(doc[3:4])
 | |
|     assert len(doc.spans["test"]) == 3
 | |
|     # check that the copy spans were not modified and this is an isolated doc
 | |
|     assert len(doc_copy.spans["test"]) == 2
 |