mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	The float -1 was returned rather than the integer -1 as the row for unknown keys. This doesn't introduce a realy bug, since such floats cast (without issues) to int in the conversion to NumPy arrays. Still, it's nice to to do the correct thing :).
		
			
				
	
	
		
			688 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			688 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
| cimport numpy as np
 | |
| from libc.stdint cimport uint32_t, uint64_t
 | |
| from cython.operator cimport dereference as deref
 | |
| from libcpp.set cimport set as cppset
 | |
| from murmurhash.mrmr cimport hash128_x64
 | |
| 
 | |
| import functools
 | |
| import numpy
 | |
| from typing import cast
 | |
| import warnings
 | |
| from enum import Enum
 | |
| import srsly
 | |
| from thinc.api import Ops, get_array_module, get_current_ops
 | |
| from thinc.backends import get_array_ops
 | |
| from thinc.types import Floats2d
 | |
| 
 | |
| from .strings cimport StringStore
 | |
| 
 | |
| from .strings import get_string_id
 | |
| from .errors import Errors, Warnings
 | |
| from . import util
 | |
| 
 | |
| 
 | |
| def unpickle_vectors(bytes_data):
 | |
|     return Vectors().from_bytes(bytes_data)
 | |
| 
 | |
| 
 | |
| class Mode(str, Enum):
 | |
|     default = "default"
 | |
|     floret = "floret"
 | |
| 
 | |
|     @classmethod
 | |
|     def values(cls):
 | |
|         return list(cls.__members__.keys())
 | |
| 
 | |
| 
 | |
| cdef class Vectors:
 | |
|     """Store, save and load word vectors.
 | |
| 
 | |
|     Vectors data is kept in the vectors.data attribute, which should be an
 | |
|     instance of numpy.ndarray (for CPU vectors) or cupy.ndarray
 | |
|     (for GPU vectors).
 | |
| 
 | |
|     In the default mode, `vectors.key2row` is a dictionary mapping word hashes
 | |
|     to rows in the vectors.data table. Multiple keys can be mapped to the same
 | |
|     vector, and not all of the rows in the table need to be assigned - so
 | |
|     len(list(vectors.keys())) may be greater or smaller than vectors.shape[0].
 | |
| 
 | |
|     In floret mode, the floret settings (minn, maxn, etc.) are used to
 | |
|     calculate the vector from the rows corresponding to the key's ngrams.
 | |
| 
 | |
|     DOCS: https://spacy.io/api/vectors
 | |
|     """
 | |
|     cdef public object strings
 | |
|     cdef public object name
 | |
|     cdef readonly object mode
 | |
|     cdef public object data
 | |
|     cdef public object key2row
 | |
|     cdef cppset[int] _unset
 | |
|     cdef readonly uint32_t minn
 | |
|     cdef readonly uint32_t maxn
 | |
|     cdef readonly uint32_t hash_count
 | |
|     cdef readonly uint32_t hash_seed
 | |
|     cdef readonly unicode bow
 | |
|     cdef readonly unicode eow
 | |
| 
 | |
|     def __init__(self, *, strings=None, shape=None, data=None, keys=None, name=None, mode=Mode.default, minn=0, maxn=0, hash_count=1, hash_seed=0, bow="<", eow=">"):
 | |
|         """Create a new vector store.
 | |
| 
 | |
|         strings (StringStore): The string store.
 | |
|         shape (tuple): Size of the table, as (# entries, # columns)
 | |
|         data (numpy.ndarray or cupy.ndarray): The vector data.
 | |
|         keys (iterable): A sequence of keys, aligned with the data.
 | |
|         name (str): A name to identify the vectors table.
 | |
|         mode (str): Vectors mode: "default" or "floret" (default: "default").
 | |
|         minn (int): The floret char ngram minn (default: 0).
 | |
|         maxn (int): The floret char ngram maxn (default: 0).
 | |
|         hash_count (int): The floret hash count (1-4, default: 1).
 | |
|         hash_seed (int): The floret hash seed (default: 0).
 | |
|         bow (str): The floret BOW string (default: "<").
 | |
|         eow (str): The floret EOW string (default: ">").
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#init
 | |
|         """
 | |
|         self.strings = strings
 | |
|         if self.strings is None:
 | |
|             self.strings = StringStore()
 | |
|         self.name = name
 | |
|         if mode not in Mode.values():
 | |
|             raise ValueError(
 | |
|                 Errors.E202.format(
 | |
|                     name="vectors",
 | |
|                     mode=mode,
 | |
|                     modes=str(Mode.values())
 | |
|                 )
 | |
|             )
 | |
|         self.mode = Mode(mode).value
 | |
|         self.key2row = {}
 | |
|         self.minn = minn
 | |
|         self.maxn = maxn
 | |
|         self.hash_count = hash_count
 | |
|         self.hash_seed = hash_seed
 | |
|         self.bow = bow
 | |
|         self.eow = eow
 | |
|         if self.mode == Mode.default:
 | |
|             if data is None:
 | |
|                 if shape is None:
 | |
|                     shape = (0,0)
 | |
|                 ops = get_current_ops()
 | |
|                 data = ops.xp.zeros(shape, dtype="f")
 | |
|                 self._unset = cppset[int]({i for i in range(data.shape[0])})
 | |
|             else:
 | |
|                 self._unset = cppset[int]()
 | |
|             self.data = data
 | |
|             if keys is not None:
 | |
|                 for i, key in enumerate(keys):
 | |
|                     self.add(key, row=i)
 | |
|         elif self.mode == Mode.floret:
 | |
|             if maxn < minn:
 | |
|                 raise ValueError(Errors.E863)
 | |
|             if hash_count < 1 or hash_count >= 5:
 | |
|                 raise ValueError(Errors.E862)
 | |
|             if data is None:
 | |
|                 raise ValueError(Errors.E864)
 | |
|             if keys is not None:
 | |
|                 raise ValueError(Errors.E861)
 | |
|             self.data = data
 | |
|             self._unset = cppset[int]()
 | |
| 
 | |
|     @property
 | |
|     def shape(self):
 | |
|         """Get `(rows, dims)` tuples of number of rows and number of dimensions
 | |
|         in the vector table.
 | |
| 
 | |
|         RETURNS (tuple): A `(rows, dims)` pair.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#shape
 | |
|         """
 | |
|         return self.data.shape
 | |
| 
 | |
|     @property
 | |
|     def size(self):
 | |
|         """The vector size i,e. rows * dims.
 | |
| 
 | |
|         RETURNS (int): The vector size.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#size
 | |
|         """
 | |
|         return self.data.size
 | |
| 
 | |
|     @property
 | |
|     def is_full(self):
 | |
|         """Whether the vectors table is full.
 | |
| 
 | |
|         RETURNS (bool): `True` if no slots are available for new keys.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#is_full
 | |
|         """
 | |
|         if self.mode == Mode.floret:
 | |
|             return True
 | |
|         return self._unset.size() == 0
 | |
| 
 | |
|     @property
 | |
|     def n_keys(self):
 | |
|         """Get the number of keys in the table. Note that this is the number
 | |
|         of all keys, not just unique vectors.
 | |
| 
 | |
|         RETURNS (int): The number of keys in the table for default vectors.
 | |
|         For floret vectors, return -1.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#n_keys
 | |
|         """
 | |
|         if self.mode == Mode.floret:
 | |
|             return -1
 | |
|         return len(self.key2row)
 | |
| 
 | |
|     def __reduce__(self):
 | |
|         return (unpickle_vectors, (self.to_bytes(),))
 | |
| 
 | |
|     def __getitem__(self, key):
 | |
|         """Get a vector by key. If the key is not found, a KeyError is raised.
 | |
| 
 | |
|         key (str/int): The key to get the vector for.
 | |
|         RETURNS (ndarray): The vector for the key.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#getitem
 | |
|         """
 | |
|         if self.mode == Mode.default:
 | |
|             i = self.key2row.get(get_string_id(key), None)
 | |
|             if i is None:
 | |
|                 raise KeyError(Errors.E058.format(key=key))
 | |
|             else:
 | |
|                 return self.data[i]
 | |
|         elif self.mode == Mode.floret:
 | |
|             return self.get_batch([key])[0]
 | |
|         raise KeyError(Errors.E058.format(key=key))
 | |
| 
 | |
|     def __setitem__(self, key, vector):
 | |
|         """Set a vector for the given key.
 | |
| 
 | |
|         key (str/int): The key to set the vector for.
 | |
|         vector (ndarray): The vector to set.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#setitem
 | |
|         """
 | |
|         if self.mode == Mode.floret:
 | |
|             warnings.warn(Warnings.W115.format(method="Vectors.__setitem__"))
 | |
|             return
 | |
|         key = get_string_id(key)
 | |
|         i = self.key2row[key]
 | |
|         self.data[i] = vector
 | |
|         if self._unset.count(i):
 | |
|             self._unset.erase(self._unset.find(i))
 | |
| 
 | |
|     def __iter__(self):
 | |
|         """Iterate over the keys in the table.
 | |
| 
 | |
|         YIELDS (int): A key in the table.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#iter
 | |
|         """
 | |
|         yield from self.key2row
 | |
| 
 | |
|     def __len__(self):
 | |
|         """Return the number of vectors in the table.
 | |
| 
 | |
|         RETURNS (int): The number of vectors in the data.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#len
 | |
|         """
 | |
|         return self.data.shape[0]
 | |
| 
 | |
|     def __contains__(self, key):
 | |
|         """Check whether a key has been mapped to a vector entry in the table.
 | |
| 
 | |
|         key (int): The key to check.
 | |
|         RETURNS (bool): Whether the key has a vector entry.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#contains
 | |
|         """
 | |
|         if self.mode == Mode.floret:
 | |
|             return True
 | |
|         else:
 | |
|             return key in self.key2row
 | |
| 
 | |
|     def resize(self, shape, inplace=False):
 | |
|         """Resize the underlying vectors array. If inplace=True, the memory
 | |
|         is reallocated. This may cause other references to the data to become
 | |
|         invalid, so only use inplace=True if you're sure that's what you want.
 | |
| 
 | |
|         If the number of vectors is reduced, keys mapped to rows that have been
 | |
|         deleted are removed. These removed items are returned as a list of
 | |
|         `(key, row)` tuples.
 | |
| 
 | |
|         shape (tuple): A `(rows, dims)` tuple.
 | |
|         inplace (bool): Reallocate the memory.
 | |
|         RETURNS (list): The removed items as a list of `(key, row)` tuples.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#resize
 | |
|         """
 | |
|         if self.mode == Mode.floret:
 | |
|             warnings.warn(Warnings.W115.format(method="Vectors.resize"))
 | |
|             return -1
 | |
|         xp = get_array_module(self.data)
 | |
|         if inplace:
 | |
|             if shape[1] != self.data.shape[1]:
 | |
|                 raise ValueError(Errors.E193.format(new_dim=shape[1], curr_dim=self.data.shape[1]))
 | |
|             if xp == numpy:
 | |
|                 self.data.resize(shape, refcheck=False)
 | |
|             else:
 | |
|                 raise ValueError(Errors.E192)
 | |
|         else:
 | |
|             resized_array = xp.zeros(shape, dtype=self.data.dtype)
 | |
|             copy_shape = (min(shape[0], self.data.shape[0]), min(shape[1], self.data.shape[1]))
 | |
|             resized_array[:copy_shape[0], :copy_shape[1]] = self.data[:copy_shape[0], :copy_shape[1]]
 | |
|             self.data = resized_array
 | |
|         self._sync_unset()
 | |
|         removed_items = []
 | |
|         for key, row in self.key2row.copy().items():
 | |
|             if row >= shape[0]:
 | |
|                 self.key2row.pop(key)
 | |
|                 removed_items.append((key, row))
 | |
|         return removed_items
 | |
| 
 | |
|     def keys(self):
 | |
|         """RETURNS (iterable): A sequence of keys in the table."""
 | |
|         return self.key2row.keys()
 | |
| 
 | |
|     def values(self):
 | |
|         """Iterate over vectors that have been assigned to at least one key.
 | |
| 
 | |
|         Note that some vectors may be unassigned, so the number of vectors
 | |
|         returned may be less than the length of the vectors table.
 | |
| 
 | |
|         YIELDS (ndarray): A vector in the table.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#values
 | |
|         """
 | |
|         for row, vector in enumerate(range(self.data.shape[0])):
 | |
|             if not self._unset.count(row):
 | |
|                 yield vector
 | |
| 
 | |
|     def items(self):
 | |
|         """Iterate over `(key, vector)` pairs.
 | |
| 
 | |
|         YIELDS (tuple): A key/vector pair.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#items
 | |
|         """
 | |
|         for key, row in self.key2row.items():
 | |
|             yield key, self.data[row]
 | |
| 
 | |
|     def find(self, *, key=None, keys=None, row=None, rows=None):
 | |
|         """Look up one or more keys by row, or vice versa.
 | |
| 
 | |
|         key (Union[int, str]): Find the row that the given key points to.
 | |
|             Returns int, -1 if missing.
 | |
|         keys (Iterable[Union[int, str]]): Find rows that the keys point to.
 | |
|             Returns ndarray.
 | |
|         row (int): Find the first key that points to the row.
 | |
|             Returns int.
 | |
|         rows (Iterable[int]): Find the keys that point to the rows.
 | |
|             Returns ndarray.
 | |
|         RETURNS: The requested key, keys, row or rows.
 | |
|         """
 | |
|         if self.mode == Mode.floret:
 | |
|             raise ValueError(
 | |
|                 Errors.E858.format(
 | |
|                     mode=self.mode,
 | |
|                     alternative="Use Vectors[key] instead.",
 | |
|                 )
 | |
|             )
 | |
|         if sum(arg is None for arg in (key, keys, row, rows)) != 3:
 | |
|             bad_kwargs = {"key": key, "keys": keys, "row": row, "rows": rows}
 | |
|             raise ValueError(Errors.E059.format(kwargs=bad_kwargs))
 | |
|         xp = get_array_module(self.data)
 | |
|         if key is not None:
 | |
|             key = get_string_id(key)
 | |
|             return self.key2row.get(key, -1)
 | |
|         elif keys is not None:
 | |
|             keys = [get_string_id(key) for key in keys]
 | |
|             rows = [self.key2row.get(key, -1) for key in keys]
 | |
|             return xp.asarray(rows, dtype="i")
 | |
|         else:
 | |
|             row2key = {row: key for key, row in self.key2row.items()}
 | |
|             if row is not None:
 | |
|                 return row2key[row]
 | |
|             else:
 | |
|                 results = [row2key[row] for row in rows]
 | |
|                 return xp.asarray(results, dtype="uint64")
 | |
| 
 | |
|     def _get_ngram_hashes(self, unicode s):
 | |
|         """Calculate up to 4 32-bit hash values with MurmurHash3_x64_128 using
 | |
|         the floret hash settings.
 | |
|         key (str): The string key.
 | |
|         RETURNS: A list of the integer hashes.
 | |
|         """
 | |
|         # MurmurHash3_x64_128 returns an array of 2 uint64_t values.
 | |
|         cdef uint64_t[2] out
 | |
|         chars = s.encode("utf8")
 | |
|         cdef char* utf8_string = chars
 | |
|         hash128_x64(utf8_string, len(chars), self.hash_seed, &out)
 | |
|         rows = [
 | |
|             out[0] & 0xffffffffu,
 | |
|             out[0] >> 32,
 | |
|             out[1] & 0xffffffffu,
 | |
|             out[1] >> 32,
 | |
|         ]
 | |
|         return rows[:min(self.hash_count, 4)]
 | |
| 
 | |
|     def _get_ngrams(self, unicode key):
 | |
|         """Get all padded ngram strings using the ngram settings.
 | |
|         key (str): The string key.
 | |
|         RETURNS: A list of the ngram strings for the padded key.
 | |
|         """
 | |
|         key = self.bow + key + self.eow
 | |
|         ngrams = [key] + [
 | |
|             key[start:start+ngram_size]
 | |
|             for ngram_size in range(self.minn, self.maxn + 1)
 | |
|             for start in range(0, len(key) - ngram_size + 1)
 | |
|         ]
 | |
|         return ngrams
 | |
| 
 | |
|     def get_batch(self, keys):
 | |
|         """Get the vectors for the provided keys efficiently as a batch.
 | |
|         keys (Iterable[Union[int, str]]): The keys.
 | |
|         RETURNS: The requested vectors from the vector table.
 | |
|         """
 | |
|         ops = get_array_ops(self.data)
 | |
|         if self.mode == Mode.default:
 | |
|             rows = self.find(keys=keys)
 | |
|             vecs = self.data[rows]
 | |
|         elif self.mode == Mode.floret:
 | |
|             keys = [self.strings.as_string(key) for key in keys]
 | |
|             if sum(len(key) for key in keys) == 0:
 | |
|                 return ops.xp.zeros((len(keys), self.data.shape[1]))
 | |
|             unique_keys = tuple(set(keys))
 | |
|             row_index = {key: i for i, key in enumerate(unique_keys)}
 | |
|             rows = [row_index[key] for key in keys]
 | |
|             indices = []
 | |
|             lengths = []
 | |
|             for key in unique_keys:
 | |
|                 if key == "":
 | |
|                     ngram_rows = []
 | |
|                 else:
 | |
|                     ngram_rows = [
 | |
|                         h % self.data.shape[0]
 | |
|                         for ngram in self._get_ngrams(key)
 | |
|                         for h in self._get_ngram_hashes(ngram)
 | |
|                     ]
 | |
|                 indices.extend(ngram_rows)
 | |
|                 lengths.append(len(ngram_rows))
 | |
|             indices = ops.asarray(indices, dtype="int32")
 | |
|             lengths = ops.asarray(lengths, dtype="int32")
 | |
|             vecs = ops.reduce_mean(cast(Floats2d, self.data[indices]), lengths)
 | |
|             vecs = vecs[rows]
 | |
|         return ops.as_contig(vecs)
 | |
| 
 | |
|     def add(self, key, *, vector=None, row=None):
 | |
|         """Add a key to the table. Keys can be mapped to an existing vector
 | |
|         by setting `row`, or a new vector can be added.
 | |
| 
 | |
|         key (int): The key to add.
 | |
|         vector (ndarray / None): A vector to add for the key.
 | |
|         row (int / None): The row number of a vector to map the key to.
 | |
|         RETURNS (int): The row the vector was added to.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#add
 | |
|         """
 | |
|         if self.mode == Mode.floret:
 | |
|             warnings.warn(Warnings.W115.format(method="Vectors.add"))
 | |
|             return -1
 | |
|         # use int for all keys and rows in key2row for more efficient access
 | |
|         # and serialization
 | |
|         key = int(get_string_id(key))
 | |
|         if row is not None:
 | |
|             row = int(row)
 | |
|         if row is None and key in self.key2row:
 | |
|             row = self.key2row[key]
 | |
|         elif row is None:
 | |
|             if self.is_full:
 | |
|                 raise ValueError(Errors.E060.format(rows=self.data.shape[0],
 | |
|                                                     cols=self.data.shape[1]))
 | |
|             row = deref(self._unset.begin())
 | |
|         if row < self.data.shape[0]:
 | |
|             self.key2row[key] = row
 | |
|         else:
 | |
|             raise ValueError(Errors.E197.format(row=row, key=key))
 | |
|         if vector is not None:
 | |
|             xp = get_array_module(self.data)
 | |
|             vector = xp.asarray(vector)
 | |
|             self.data[row] = vector
 | |
|         if self._unset.count(row):
 | |
|             self._unset.erase(self._unset.find(row))
 | |
|         return row
 | |
| 
 | |
|     def most_similar(self, queries, *, batch_size=1024, n=1, sort=True):
 | |
|         """For each of the given vectors, find the n most similar entries
 | |
|         to it, by cosine.
 | |
| 
 | |
|         Queries are by vector. Results are returned as a `(keys, best_rows,
 | |
|         scores)` tuple. If `queries` is large, the calculations are performed in
 | |
|         chunks, to avoid consuming too much memory. You can set the `batch_size`
 | |
|         to control the size/space trade-off during the calculations.
 | |
| 
 | |
|         queries (ndarray): An array with one or more vectors.
 | |
|         batch_size (int): The batch size to use.
 | |
|         n (int): The number of entries to return for each query.
 | |
|         sort (bool): Whether to sort the n entries returned by score.
 | |
|         RETURNS (tuple): The most similar entries as a `(keys, best_rows, scores)`
 | |
|             tuple.
 | |
|         """
 | |
|         if self.mode == Mode.floret:
 | |
|             raise ValueError(Errors.E858.format(
 | |
|                 mode=self.mode,
 | |
|                 alternative="",
 | |
|             ))
 | |
|         xp = get_array_module(self.data)
 | |
|         filled = sorted(list({row for row in self.key2row.values()}))
 | |
|         if len(filled) < n:
 | |
|             raise ValueError(Errors.E198.format(n=n, n_rows=len(filled)))
 | |
|         filled = xp.asarray(filled)
 | |
| 
 | |
|         norms = xp.linalg.norm(self.data[filled], axis=1, keepdims=True)
 | |
|         norms[norms == 0] = 1
 | |
|         vectors = self.data[filled] / norms
 | |
| 
 | |
|         best_rows = xp.zeros((queries.shape[0], n), dtype='i')
 | |
|         scores = xp.zeros((queries.shape[0], n), dtype='f')
 | |
|         # Work in batches, to avoid memory problems.
 | |
|         for i in range(0, queries.shape[0], batch_size):
 | |
|             batch = queries[i : i+batch_size]
 | |
|             batch_norms = xp.linalg.norm(batch, axis=1, keepdims=True)
 | |
|             batch_norms[batch_norms == 0] = 1
 | |
|             batch /= batch_norms
 | |
|             # batch   e.g. (1024, 300)
 | |
|             # vectors e.g. (10000, 300)
 | |
|             # sims    e.g. (1024, 10000)
 | |
|             sims = xp.dot(batch, vectors.T)
 | |
|             best_rows[i:i+batch_size] = xp.argpartition(sims, -n, axis=1)[:,-n:]
 | |
|             scores[i:i+batch_size] = xp.partition(sims, -n, axis=1)[:,-n:]
 | |
| 
 | |
|             if sort and n >= 2:
 | |
|                 sorted_index = xp.arange(scores.shape[0])[:,None][i:i+batch_size],xp.argsort(scores[i:i+batch_size], axis=1)[:,::-1]
 | |
|                 scores[i:i+batch_size] = scores[sorted_index]
 | |
|                 best_rows[i:i+batch_size] = best_rows[sorted_index]
 | |
| 
 | |
|         for i, j in numpy.ndindex(best_rows.shape):
 | |
|             best_rows[i, j] = filled[best_rows[i, j]]
 | |
|         # Round values really close to 1 or -1
 | |
|         scores = xp.around(scores, decimals=4, out=scores)
 | |
|         # Account for numerical error we want to return in range -1, 1
 | |
|         scores = xp.clip(scores, a_min=-1, a_max=1, out=scores)
 | |
|         row2key = {row: key for key, row in self.key2row.items()}
 | |
| 
 | |
|         numpy_rows = get_current_ops().to_numpy(best_rows)
 | |
|         keys = xp.asarray(
 | |
|             [[row2key[row] for row in numpy_rows[i] if row in row2key]
 | |
|                     for i in range(len(queries)) ], dtype="uint64")
 | |
|         return (keys, best_rows, scores)
 | |
| 
 | |
|     def to_ops(self, ops: Ops):
 | |
|         self.data = ops.asarray(self.data)
 | |
| 
 | |
|     def _get_cfg(self):
 | |
|         if self.mode == Mode.default:
 | |
|             return {
 | |
|                 "mode": Mode(self.mode).value,
 | |
|             }
 | |
|         elif self.mode == Mode.floret:
 | |
|             return {
 | |
|                 "mode": Mode(self.mode).value,
 | |
|                 "minn": self.minn,
 | |
|                 "maxn": self.maxn,
 | |
|                 "hash_count": self.hash_count,
 | |
|                 "hash_seed": self.hash_seed,
 | |
|                 "bow": self.bow,
 | |
|                 "eow": self.eow,
 | |
|             }
 | |
| 
 | |
|     def _set_cfg(self, cfg):
 | |
|         self.mode = Mode(cfg.get("mode", Mode.default)).value
 | |
|         self.minn = cfg.get("minn", 0)
 | |
|         self.maxn = cfg.get("maxn", 0)
 | |
|         self.hash_count = cfg.get("hash_count", 0)
 | |
|         self.hash_seed = cfg.get("hash_seed", 0)
 | |
|         self.bow = cfg.get("bow", "<")
 | |
|         self.eow = cfg.get("eow", ">")
 | |
| 
 | |
|     def to_disk(self, path, *, exclude=tuple()):
 | |
|         """Save the current state to a directory.
 | |
| 
 | |
|         path (str / Path): A path to a directory, which will be created if
 | |
|             it doesn't exists.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#to_disk
 | |
|         """
 | |
|         xp = get_array_module(self.data)
 | |
|         if xp is numpy:
 | |
|             save_array = lambda arr, file_: xp.save(file_, arr, allow_pickle=False)
 | |
|         else:
 | |
|             save_array = lambda arr, file_: xp.save(file_, arr)
 | |
| 
 | |
|         def save_vectors(path):
 | |
|             # the source of numpy.save indicates that the file object is closed after use.
 | |
|             # but it seems that somehow this does not happen, as ResourceWarnings are raised here.
 | |
|             # in order to not rely on this, wrap in context manager.
 | |
|             ops = get_current_ops()
 | |
|             with path.open("wb") as _file:
 | |
|                 save_array(ops.to_numpy(self.data, byte_order="<"), _file)
 | |
| 
 | |
|         serializers = {
 | |
|             "strings": lambda p: self.strings.to_disk(p.with_suffix(".json")),
 | |
|             "vectors": lambda p: save_vectors(p),
 | |
|             "key2row": lambda p: srsly.write_msgpack(p, self.key2row),
 | |
|             "vectors.cfg": lambda p: srsly.write_json(p, self._get_cfg()),
 | |
|         }
 | |
|         return util.to_disk(path, serializers, exclude)
 | |
| 
 | |
|     def from_disk(self, path, *, exclude=tuple()):
 | |
|         """Loads state from a directory. Modifies the object in place and
 | |
|         returns it.
 | |
| 
 | |
|         path (str / Path): Directory path, string or Path-like object.
 | |
|         RETURNS (Vectors): The modified object.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#from_disk
 | |
|         """
 | |
|         def load_key2row(path):
 | |
|             if path.exists():
 | |
|                 self.key2row = srsly.read_msgpack(path)
 | |
|             for key, row in self.key2row.items():
 | |
|                 if self._unset.count(row):
 | |
|                     self._unset.erase(self._unset.find(row))
 | |
| 
 | |
|         def load_keys(path):
 | |
|             if path.exists():
 | |
|                 keys = numpy.load(str(path))
 | |
|                 for i, key in enumerate(keys):
 | |
|                     self.add(key, row=i)
 | |
| 
 | |
|         def load_vectors(path):
 | |
|             ops = get_current_ops()
 | |
|             if path.exists():
 | |
|                 self.data = ops.xp.load(str(path))
 | |
|             self.to_ops(ops)
 | |
| 
 | |
|         def load_settings(path):
 | |
|             if path.exists():
 | |
|                 self._set_cfg(srsly.read_json(path))
 | |
| 
 | |
|         serializers = {
 | |
|             "strings": lambda p: self.strings.from_disk(p.with_suffix(".json")),
 | |
|             "vectors": load_vectors,
 | |
|             "keys": load_keys,
 | |
|             "key2row": load_key2row,
 | |
|             "vectors.cfg": load_settings,
 | |
|         }
 | |
| 
 | |
|         util.from_disk(path, serializers, exclude)
 | |
|         self._sync_unset()
 | |
|         return self
 | |
| 
 | |
|     def to_bytes(self, *, exclude=tuple()):
 | |
|         """Serialize the current state to a binary string.
 | |
| 
 | |
|         exclude (list): String names of serialization fields to exclude.
 | |
|         RETURNS (bytes): The serialized form of the `Vectors` object.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#to_bytes
 | |
|         """
 | |
|         def serialize_weights():
 | |
|             if hasattr(self.data, "to_bytes"):
 | |
|                 return self.data.to_bytes()
 | |
|             else:
 | |
|                 ops = get_current_ops()
 | |
|                 return srsly.msgpack_dumps(ops.to_numpy(self.data, byte_order="<"))
 | |
| 
 | |
|         serializers = {
 | |
|             "strings": lambda: self.strings.to_bytes(),
 | |
|             "key2row": lambda: srsly.msgpack_dumps(self.key2row),
 | |
|             "vectors": serialize_weights,
 | |
|             "vectors.cfg": lambda: srsly.json_dumps(self._get_cfg()),
 | |
|         }
 | |
|         return util.to_bytes(serializers, exclude)
 | |
| 
 | |
|     def from_bytes(self, data, *, exclude=tuple()):
 | |
|         """Load state from a binary string.
 | |
| 
 | |
|         data (bytes): The data to load from.
 | |
|         exclude (list): String names of serialization fields to exclude.
 | |
|         RETURNS (Vectors): The `Vectors` object.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#from_bytes
 | |
|         """
 | |
|         def deserialize_weights(b):
 | |
|             if hasattr(self.data, "from_bytes"):
 | |
|                 self.data.from_bytes()
 | |
|             else:
 | |
|                 xp = get_array_module(self.data)
 | |
|                 self.data = xp.asarray(srsly.msgpack_loads(b))
 | |
|                 ops = get_current_ops()
 | |
|                 self.to_ops(ops)
 | |
| 
 | |
|         deserializers = {
 | |
|             "strings": lambda b: self.strings.from_bytes(b),
 | |
|             "key2row": lambda b: self.key2row.update(srsly.msgpack_loads(b)),
 | |
|             "vectors": deserialize_weights,
 | |
|             "vectors.cfg": lambda b: self._set_cfg(srsly.json_loads(b))
 | |
|         }
 | |
|         util.from_bytes(data, deserializers, exclude)
 | |
|         self._sync_unset()
 | |
|         return self
 | |
| 
 | |
|     def clear(self):
 | |
|         """Clear all entries in the vector table.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/vectors#clear
 | |
|         """
 | |
|         if self.mode == Mode.floret:
 | |
|             raise ValueError(Errors.E859)
 | |
|         self.key2row = {}
 | |
|         self._sync_unset()
 | |
| 
 | |
|     def _sync_unset(self):
 | |
|         filled = {row for row in self.key2row.values()}
 | |
|         self._unset = cppset[int]({row for row in range(self.data.shape[0]) if row not in filled})
 |