mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			94 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			94 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
 | 
						|
from spacy.gold import Example
 | 
						|
from spacy.pipeline.defaults import default_parser, default_tok2vec
 | 
						|
from spacy.vocab import Vocab
 | 
						|
from spacy.syntax.arc_eager import ArcEager
 | 
						|
from spacy.syntax.nn_parser import Parser
 | 
						|
from spacy.tokens.doc import Doc
 | 
						|
from thinc.api import Model
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def vocab():
 | 
						|
    return Vocab()
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def arc_eager(vocab):
 | 
						|
    actions = ArcEager.get_actions(left_labels=["L"], right_labels=["R"])
 | 
						|
    return ArcEager(vocab.strings, actions)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def tok2vec():
 | 
						|
    tok2vec = default_tok2vec()
 | 
						|
    tok2vec.initialize()
 | 
						|
    return tok2vec
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def parser(vocab, arc_eager):
 | 
						|
    config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
 | 
						|
    return Parser(vocab, model=default_parser(), moves=arc_eager, **config)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def model(arc_eager, tok2vec, vocab):
 | 
						|
    model = default_parser()
 | 
						|
    model.attrs["resize_output"](model, arc_eager.n_moves)
 | 
						|
    model.initialize()
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def doc(vocab):
 | 
						|
    return Doc(vocab, words=["a", "b", "c"])
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def gold(doc):
 | 
						|
    return {"heads": [1, 1, 1], "deps": ["L", "ROOT", "R"]}
 | 
						|
 | 
						|
 | 
						|
def test_can_init_nn_parser(parser):
 | 
						|
    assert isinstance(parser.model, Model)
 | 
						|
 | 
						|
 | 
						|
def test_build_model(parser, vocab):
 | 
						|
    parser.model = Parser(vocab, model=default_parser(), moves=parser.moves).model
 | 
						|
    assert parser.model is not None
 | 
						|
 | 
						|
 | 
						|
def test_predict_doc(parser, tok2vec, model, doc):
 | 
						|
    doc.tensor = tok2vec.predict([doc])[0]
 | 
						|
    parser.model = model
 | 
						|
    parser(doc)
 | 
						|
 | 
						|
 | 
						|
def test_update_doc(parser, model, doc, gold):
 | 
						|
    parser.model = model
 | 
						|
 | 
						|
    def optimize(key, weights, gradient):
 | 
						|
        weights -= 0.001 * gradient
 | 
						|
        return weights, gradient
 | 
						|
 | 
						|
    example = Example.from_dict(doc, gold)
 | 
						|
    parser.update([example], sgd=optimize)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.xfail
 | 
						|
def test_predict_doc_beam(parser, model, doc):
 | 
						|
    parser.model = model
 | 
						|
    parser(doc, beam_width=32, beam_density=0.001)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.xfail
 | 
						|
def test_update_doc_beam(parser, model, doc, gold):
 | 
						|
    parser.model = model
 | 
						|
 | 
						|
    def optimize(weights, gradient, key=None):
 | 
						|
        weights -= 0.001 * gradient
 | 
						|
 | 
						|
    parser.update_beam((doc, gold), sgd=optimize)
 |