mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
212 lines
6.3 KiB
Python
212 lines
6.3 KiB
Python
import pytest
|
|
import spacy
|
|
|
|
from typing import List
|
|
from spacy.training import Example
|
|
|
|
|
|
TRAIN_DATA = [
|
|
(
|
|
"Who is Kofi Annan?",
|
|
{
|
|
"entities": [(7, 18, "PERSON")],
|
|
"tags": ["PRON", "AUX", "PROPN", "PRON", "PUNCT"],
|
|
"heads": [1, 1, 3, 1, 1],
|
|
"deps": ["attr", "ROOT", "compound", "nsubj", "punct"],
|
|
"morphs": [
|
|
"",
|
|
"Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin",
|
|
"Number=Sing",
|
|
"Number=Sing",
|
|
"PunctType=Peri",
|
|
],
|
|
"cats": {"question": 1.0},
|
|
},
|
|
),
|
|
(
|
|
"Who is Steve Jobs?",
|
|
{
|
|
"entities": [(7, 17, "PERSON")],
|
|
"tags": ["PRON", "AUX", "PROPN", "PRON", "PUNCT"],
|
|
"heads": [1, 1, 3, 1, 1],
|
|
"deps": ["attr", "ROOT", "compound", "nsubj", "punct"],
|
|
"morphs": [
|
|
"",
|
|
"Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin",
|
|
"Number=Sing",
|
|
"Number=Sing",
|
|
"PunctType=Peri",
|
|
],
|
|
"cats": {"question": 1.0},
|
|
},
|
|
),
|
|
(
|
|
"Bob is a nice person.",
|
|
{
|
|
"entities": [(0, 3, "PERSON")],
|
|
"tags": ["PROPN", "AUX", "DET", "ADJ", "NOUN", "PUNCT"],
|
|
"heads": [1, 1, 4, 4, 1, 1],
|
|
"deps": ["nsubj", "ROOT", "det", "amod", "attr", "punct"],
|
|
"morphs": [
|
|
"Number=Sing",
|
|
"Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin",
|
|
"Definite=Ind|PronType=Art",
|
|
"Degree=Pos",
|
|
"Number=Sing",
|
|
"PunctType=Peri",
|
|
],
|
|
"cats": {"statement": 1.0},
|
|
},
|
|
),
|
|
(
|
|
"Hi Anil, how are you?",
|
|
{
|
|
"entities": [(3, 7, "PERSON")],
|
|
"tags": ["INTJ", "PROPN", "PUNCT", "ADV", "AUX", "PRON", "PUNCT"],
|
|
"deps": ["intj", "npadvmod", "punct", "advmod", "ROOT", "nsubj", "punct"],
|
|
"heads": [4, 0, 4, 4, 4, 4, 4],
|
|
"morphs": [
|
|
"",
|
|
"Number=Sing",
|
|
"PunctType=Comm",
|
|
"",
|
|
"Mood=Ind|Tense=Pres|VerbForm=Fin",
|
|
"Case=Nom|Person=2|PronType=Prs",
|
|
"PunctType=Peri",
|
|
],
|
|
"cats": {"greeting": 1.0, "question": 1.0},
|
|
},
|
|
),
|
|
(
|
|
"I like London and Berlin.",
|
|
{
|
|
"entities": [(7, 13, "LOC"), (18, 24, "LOC")],
|
|
"tags": ["PROPN", "VERB", "PROPN", "CCONJ", "PROPN", "PUNCT"],
|
|
"deps": ["nsubj", "ROOT", "dobj", "cc", "conj", "punct"],
|
|
"heads": [1, 1, 1, 2, 2, 1],
|
|
"morphs": [
|
|
"Case=Nom|Number=Sing|Person=1|PronType=Prs",
|
|
"Tense=Pres|VerbForm=Fin",
|
|
"Number=Sing",
|
|
"ConjType=Cmp",
|
|
"Number=Sing",
|
|
"PunctType=Peri",
|
|
],
|
|
"cats": {"statement": 1.0},
|
|
},
|
|
),
|
|
]
|
|
|
|
REHEARSE_DATA = [
|
|
(
|
|
"Hi Anil",
|
|
{
|
|
"entities": [(3, 7, "PERSON")],
|
|
"tags": ["INTJ", "PROPN"],
|
|
"deps": ["ROOT", "npadvmod"],
|
|
"heads": [0, 0],
|
|
"morphs": ["", "Number=Sing"],
|
|
"cats": {"greeting": 1.0},
|
|
},
|
|
),
|
|
(
|
|
"Hi Ravish, how you doing?",
|
|
{
|
|
"entities": [(3, 9, "PERSON")],
|
|
"tags": ["INTJ", "PROPN", "PUNCT", "ADV", "AUX", "PRON", "PUNCT"],
|
|
"deps": ["intj", "ROOT", "punct", "advmod", "nsubj", "advcl", "punct"],
|
|
"heads": [1, 1, 1, 5, 5, 1, 1],
|
|
"morphs": [
|
|
"",
|
|
"VerbForm=Inf",
|
|
"PunctType=Comm",
|
|
"",
|
|
"Case=Nom|Person=2|PronType=Prs",
|
|
"Aspect=Prog|Tense=Pres|VerbForm=Part",
|
|
"PunctType=Peri",
|
|
],
|
|
"cats": {"greeting": 1.0, "question": 1.0},
|
|
},
|
|
),
|
|
# UTENSIL new label
|
|
(
|
|
"Natasha bought new forks.",
|
|
{
|
|
"entities": [(0, 7, "PERSON"), (19, 24, "UTENSIL")],
|
|
"tags": ["PROPN", "VERB", "ADJ", "NOUN", "PUNCT"],
|
|
"deps": ["nsubj", "ROOT", "amod", "dobj", "punct"],
|
|
"heads": [1, 1, 3, 1, 1],
|
|
"morphs": [
|
|
"Number=Sing",
|
|
"Tense=Past|VerbForm=Fin",
|
|
"Degree=Pos",
|
|
"Number=Plur",
|
|
"PunctType=Peri",
|
|
],
|
|
"cats": {"statement": 1.0},
|
|
},
|
|
),
|
|
]
|
|
|
|
|
|
def _add_ner_label(ner, data):
|
|
for _, annotations in data:
|
|
for ent in annotations["entities"]:
|
|
ner.add_label(ent[2])
|
|
|
|
|
|
def _add_tagger_label(tagger, data):
|
|
for _, annotations in data:
|
|
for tag in annotations["tags"]:
|
|
tagger.add_label(tag)
|
|
|
|
|
|
def _add_parser_label(parser, data):
|
|
for _, annotations in data:
|
|
for dep in annotations["deps"]:
|
|
parser.add_label(dep)
|
|
|
|
|
|
def _add_textcat_label(textcat, data):
|
|
for _, annotations in data:
|
|
for cat in annotations["cats"]:
|
|
textcat.add_label(cat)
|
|
|
|
|
|
def _optimize(nlp, component: str, data: List, rehearse: bool):
|
|
"""Run either train or rehearse."""
|
|
pipe = nlp.get_pipe(component)
|
|
if component == "ner":
|
|
_add_ner_label(pipe, data)
|
|
elif component == "tagger":
|
|
_add_tagger_label(pipe, data)
|
|
elif component == "parser":
|
|
_add_parser_label(pipe, data)
|
|
elif component == "textcat_multilabel":
|
|
_add_textcat_label(pipe, data)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
if rehearse:
|
|
optimizer = nlp.resume_training()
|
|
else:
|
|
optimizer = nlp.initialize()
|
|
|
|
for _ in range(5):
|
|
for text, annotation in data:
|
|
doc = nlp.make_doc(text)
|
|
example = Example.from_dict(doc, annotation)
|
|
if rehearse:
|
|
nlp.rehearse([example], sgd=optimizer)
|
|
else:
|
|
nlp.update([example], sgd=optimizer)
|
|
return nlp
|
|
|
|
|
|
@pytest.mark.parametrize("component", ["ner", "tagger", "parser", "textcat_multilabel"])
|
|
def test_rehearse(component):
|
|
nlp = spacy.blank("en")
|
|
nlp.add_pipe(component)
|
|
nlp = _optimize(nlp, component, TRAIN_DATA, False)
|
|
_optimize(nlp, component, REHEARSE_DATA, True)
|