mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-25 05:01:02 +03:00 
			
		
		
		
	* Remove backwards-compatible overwrite from Entity Linker This also adds a docstring about overwrite, since it wasn't present. * Fix docstring * Remove backward compat settings in Morphologizer This also needed a docstring added. For this component it's less clear what the right overwrite settings are. * Remove backward compat from sentencizer This was simple * Remove backward compat from senter Another simple one * Remove backward compat setting from tagger * Add docstrings * Update spacy/pipeline/morphologizer.pyx Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Update docs --------- Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
		
			
				
	
	
		
			751 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			751 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Optional, Iterable, Callable, Dict, Sequence, Union, List, Any
 | |
| from typing import cast
 | |
| from numpy import dtype
 | |
| from thinc.types import Floats1d, Floats2d, Ints1d, Ragged
 | |
| from pathlib import Path
 | |
| from itertools import islice
 | |
| import srsly
 | |
| import random
 | |
| from thinc.api import CosineDistance, Model, Optimizer, Config
 | |
| from thinc.api import set_dropout_rate
 | |
| 
 | |
| from ..kb import KnowledgeBase, Candidate
 | |
| from ..ml import empty_kb
 | |
| from ..tokens import Doc, Span
 | |
| from .pipe import deserialize_config
 | |
| from .trainable_pipe import TrainablePipe
 | |
| from ..language import Language
 | |
| from ..vocab import Vocab
 | |
| from ..training import Example, validate_examples, validate_get_examples
 | |
| from ..errors import Errors
 | |
| from ..util import SimpleFrozenList, registry
 | |
| from .. import util
 | |
| from ..scorer import Scorer
 | |
| 
 | |
| 
 | |
| ActivationsT = Dict[str, Union[List[Ragged], List[str]]]
 | |
| 
 | |
| KNOWLEDGE_BASE_IDS = "kb_ids"
 | |
| 
 | |
| default_model_config = """
 | |
| [model]
 | |
| @architectures = "spacy.EntityLinker.v2"
 | |
| 
 | |
| [model.tok2vec]
 | |
| @architectures = "spacy.HashEmbedCNN.v2"
 | |
| pretrained_vectors = null
 | |
| width = 96
 | |
| depth = 2
 | |
| embed_size = 2000
 | |
| window_size = 1
 | |
| maxout_pieces = 3
 | |
| subword_features = true
 | |
| """
 | |
| DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
 | |
| 
 | |
| 
 | |
| @Language.factory(
 | |
|     "entity_linker",
 | |
|     requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
 | |
|     assigns=["token.ent_kb_id"],
 | |
|     default_config={
 | |
|         "model": DEFAULT_NEL_MODEL,
 | |
|         "labels_discard": [],
 | |
|         "n_sents": 0,
 | |
|         "incl_prior": True,
 | |
|         "incl_context": True,
 | |
|         "entity_vector_length": 64,
 | |
|         "get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
 | |
|         "get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
 | |
|         "overwrite": False,
 | |
|         "scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
 | |
|         "use_gold_ents": True,
 | |
|         "candidates_batch_size": 1,
 | |
|         "threshold": None,
 | |
|         "save_activations": False,
 | |
|     },
 | |
|     default_score_weights={
 | |
|         "nel_micro_f": 1.0,
 | |
|         "nel_micro_r": None,
 | |
|         "nel_micro_p": None,
 | |
|     },
 | |
| )
 | |
| def make_entity_linker(
 | |
|     nlp: Language,
 | |
|     name: str,
 | |
|     model: Model,
 | |
|     *,
 | |
|     labels_discard: Iterable[str],
 | |
|     n_sents: int,
 | |
|     incl_prior: bool,
 | |
|     incl_context: bool,
 | |
|     entity_vector_length: int,
 | |
|     get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
 | |
|     get_candidates_batch: Callable[
 | |
|         [KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
 | |
|     ],
 | |
|     overwrite: bool,
 | |
|     scorer: Optional[Callable],
 | |
|     use_gold_ents: bool,
 | |
|     candidates_batch_size: int,
 | |
|     threshold: Optional[float] = None,
 | |
|     save_activations: bool,
 | |
| ):
 | |
|     """Construct an EntityLinker component.
 | |
| 
 | |
|     model (Model[List[Doc], Floats2d]): A model that learns document vector
 | |
|         representations. Given a batch of Doc objects, it should return a single
 | |
|         array, with one row per item in the batch.
 | |
|     labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction.
 | |
|     n_sents (int): The number of neighbouring sentences to take into account.
 | |
|     incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
 | |
|     incl_context (bool): Whether or not to include the local context in the model.
 | |
|     entity_vector_length (int): Size of encoding vectors in the KB.
 | |
|     get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that
 | |
|         produces a list of candidates, given a certain knowledge base and a textual mention.
 | |
|     get_candidates_batch (
 | |
|         Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]], Iterable[Candidate]]
 | |
|         ): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
 | |
|     scorer (Optional[Callable]): The scoring method.
 | |
|     use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
 | |
|         component must provide entity annotations.
 | |
|     candidates_batch_size (int): Size of batches for entity candidate generation.
 | |
|     threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the threshold,
 | |
|         prediction is discarded. If None, predictions are not filtered by any threshold.
 | |
|     save_activations (bool): save model activations in Doc when annotating.
 | |
|     """
 | |
| 
 | |
|     if not model.attrs.get("include_span_maker", False):
 | |
|         try:
 | |
|             from spacy_legacy.components.entity_linker import EntityLinker_v1
 | |
|         except:
 | |
|             raise ImportError(
 | |
|                 "In order to use v1 of the EntityLinker, you must use spacy-legacy>=3.0.12."
 | |
|             )
 | |
|         # The only difference in arguments here is that use_gold_ents and threshold aren't available.
 | |
|         return EntityLinker_v1(
 | |
|             nlp.vocab,
 | |
|             model,
 | |
|             name,
 | |
|             labels_discard=labels_discard,
 | |
|             n_sents=n_sents,
 | |
|             incl_prior=incl_prior,
 | |
|             incl_context=incl_context,
 | |
|             entity_vector_length=entity_vector_length,
 | |
|             get_candidates=get_candidates,
 | |
|             overwrite=overwrite,
 | |
|             scorer=scorer,
 | |
|         )
 | |
|     return EntityLinker(
 | |
|         nlp.vocab,
 | |
|         model,
 | |
|         name,
 | |
|         labels_discard=labels_discard,
 | |
|         n_sents=n_sents,
 | |
|         incl_prior=incl_prior,
 | |
|         incl_context=incl_context,
 | |
|         entity_vector_length=entity_vector_length,
 | |
|         get_candidates=get_candidates,
 | |
|         get_candidates_batch=get_candidates_batch,
 | |
|         overwrite=overwrite,
 | |
|         scorer=scorer,
 | |
|         use_gold_ents=use_gold_ents,
 | |
|         candidates_batch_size=candidates_batch_size,
 | |
|         threshold=threshold,
 | |
|         save_activations=save_activations,
 | |
|     )
 | |
| 
 | |
| 
 | |
| def entity_linker_score(examples, **kwargs):
 | |
|     return Scorer.score_links(examples, negative_labels=[EntityLinker.NIL], **kwargs)
 | |
| 
 | |
| 
 | |
| @registry.scorers("spacy.entity_linker_scorer.v1")
 | |
| def make_entity_linker_scorer():
 | |
|     return entity_linker_score
 | |
| 
 | |
| 
 | |
| class EntityLinker(TrainablePipe):
 | |
|     """Pipeline component for named entity linking.
 | |
| 
 | |
|     DOCS: https://spacy.io/api/entitylinker
 | |
|     """
 | |
| 
 | |
|     NIL = "NIL"  # string used to refer to a non-existing link
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         vocab: Vocab,
 | |
|         model: Model,
 | |
|         name: str = "entity_linker",
 | |
|         *,
 | |
|         labels_discard: Iterable[str],
 | |
|         n_sents: int,
 | |
|         incl_prior: bool,
 | |
|         incl_context: bool,
 | |
|         entity_vector_length: int,
 | |
|         get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
 | |
|         get_candidates_batch: Callable[
 | |
|             [KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
 | |
|         ],
 | |
|         overwrite: bool = False,
 | |
|         scorer: Optional[Callable] = entity_linker_score,
 | |
|         use_gold_ents: bool,
 | |
|         candidates_batch_size: int,
 | |
|         threshold: Optional[float] = None,
 | |
|         save_activations: bool = False,
 | |
|     ) -> None:
 | |
|         """Initialize an entity linker.
 | |
| 
 | |
|         vocab (Vocab): The shared vocabulary.
 | |
|         model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | |
|         name (str): The component instance name, used to add entries to the
 | |
|             losses during training.
 | |
|         labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction.
 | |
|         n_sents (int): The number of neighbouring sentences to take into account.
 | |
|         incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
 | |
|         incl_context (bool): Whether or not to include the local context in the model.
 | |
|         entity_vector_length (int): Size of encoding vectors in the KB.
 | |
|         get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that
 | |
|             produces a list of candidates, given a certain knowledge base and a textual mention.
 | |
|         get_candidates_batch (
 | |
|             Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]],
 | |
|             Iterable[Candidate]]
 | |
|             ): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
 | |
|         overwrite (bool): Whether to overwrite existing non-empty annotations.
 | |
|         scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_links.
 | |
|         use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
 | |
|             component must provide entity annotations.
 | |
|         candidates_batch_size (int): Size of batches for entity candidate generation.
 | |
|         threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the
 | |
|             threshold, prediction is discarded. If None, predictions are not filtered by any threshold.
 | |
|         DOCS: https://spacy.io/api/entitylinker#init
 | |
|         """
 | |
| 
 | |
|         if threshold is not None and not (0 <= threshold <= 1):
 | |
|             raise ValueError(
 | |
|                 Errors.E1043.format(
 | |
|                     range_start=0,
 | |
|                     range_end=1,
 | |
|                     value=threshold,
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|         self.vocab = vocab
 | |
|         self.model = model
 | |
|         self.name = name
 | |
|         self.labels_discard = list(labels_discard)
 | |
|         self.n_sents = n_sents
 | |
|         self.incl_prior = incl_prior
 | |
|         self.incl_context = incl_context
 | |
|         self.get_candidates = get_candidates
 | |
|         self.get_candidates_batch = get_candidates_batch
 | |
|         self.cfg: Dict[str, Any] = {"overwrite": overwrite}
 | |
|         self.distance = CosineDistance(normalize=False)
 | |
|         # how many neighbour sentences to take into account
 | |
|         # create an empty KB by default
 | |
|         self.kb = empty_kb(entity_vector_length)(self.vocab)
 | |
|         self.scorer = scorer
 | |
|         self.use_gold_ents = use_gold_ents
 | |
|         self.candidates_batch_size = candidates_batch_size
 | |
|         self.threshold = threshold
 | |
|         self.save_activations = save_activations
 | |
| 
 | |
|         if candidates_batch_size < 1:
 | |
|             raise ValueError(Errors.E1044)
 | |
| 
 | |
|     def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]):
 | |
|         """Define the KB of this pipe by providing a function that will
 | |
|         create it using this object's vocab."""
 | |
|         if not callable(kb_loader):
 | |
|             raise ValueError(Errors.E885.format(arg_type=type(kb_loader)))
 | |
| 
 | |
|         self.kb = kb_loader(self.vocab)  # type: ignore
 | |
| 
 | |
|     def validate_kb(self) -> None:
 | |
|         # Raise an error if the knowledge base is not initialized.
 | |
|         if self.kb is None:
 | |
|             raise ValueError(Errors.E1018.format(name=self.name))
 | |
|         if len(self.kb) == 0:
 | |
|             raise ValueError(Errors.E139.format(name=self.name))
 | |
| 
 | |
|     def initialize(
 | |
|         self,
 | |
|         get_examples: Callable[[], Iterable[Example]],
 | |
|         *,
 | |
|         nlp: Optional[Language] = None,
 | |
|         kb_loader: Optional[Callable[[Vocab], KnowledgeBase]] = None,
 | |
|     ):
 | |
|         """Initialize the pipe for training, using a representative set
 | |
|         of data examples.
 | |
| 
 | |
|         get_examples (Callable[[], Iterable[Example]]): Function that
 | |
|             returns a representative sample of gold-standard Example objects.
 | |
|         nlp (Language): The current nlp object the component is part of.
 | |
|         kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates a KnowledgeBase from a Vocab
 | |
|             instance. Note that providing this argument will overwrite all data accumulated in the current KB.
 | |
|             Use this only when loading a KB as-such from file.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/entitylinker#initialize
 | |
|         """
 | |
|         validate_get_examples(get_examples, "EntityLinker.initialize")
 | |
|         if kb_loader is not None:
 | |
|             self.set_kb(kb_loader)
 | |
|         self.validate_kb()
 | |
|         nO = self.kb.entity_vector_length
 | |
|         doc_sample = []
 | |
|         vector_sample = []
 | |
|         for eg in islice(get_examples(), 10):
 | |
|             doc = eg.x
 | |
|             if self.use_gold_ents:
 | |
|                 ents, _ = eg.get_aligned_ents_and_ner()
 | |
|                 doc.ents = ents
 | |
|             doc_sample.append(doc)
 | |
|             vector_sample.append(self.model.ops.alloc1f(nO))
 | |
|         assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
 | |
|         assert len(vector_sample) > 0, Errors.E923.format(name=self.name)
 | |
| 
 | |
|         # XXX In order for size estimation to work, there has to be at least
 | |
|         # one entity. It's not used for training so it doesn't have to be real,
 | |
|         # so we add a fake one if none are present.
 | |
|         # We can't use Doc.has_annotation here because it can be True for docs
 | |
|         # that have been through an NER component but got no entities.
 | |
|         has_annotations = any([doc.ents for doc in doc_sample])
 | |
|         if not has_annotations:
 | |
|             doc = doc_sample[0]
 | |
|             ent = doc[0:1]
 | |
|             ent.label_ = "XXX"
 | |
|             doc.ents = (ent,)
 | |
| 
 | |
|         self.model.initialize(
 | |
|             X=doc_sample, Y=self.model.ops.asarray(vector_sample, dtype="float32")
 | |
|         )
 | |
| 
 | |
|         if not has_annotations:
 | |
|             # Clean up dummy annotation
 | |
|             doc.ents = []
 | |
| 
 | |
|     def batch_has_learnable_example(self, examples):
 | |
|         """Check if a batch contains a learnable example.
 | |
| 
 | |
|         If one isn't present, then the update step needs to be skipped.
 | |
|         """
 | |
| 
 | |
|         for eg in examples:
 | |
|             for ent in eg.predicted.ents:
 | |
|                 candidates = list(self.get_candidates(self.kb, ent))
 | |
|                 if candidates:
 | |
|                     return True
 | |
| 
 | |
|         return False
 | |
| 
 | |
|     def update(
 | |
|         self,
 | |
|         examples: Iterable[Example],
 | |
|         *,
 | |
|         drop: float = 0.0,
 | |
|         sgd: Optional[Optimizer] = None,
 | |
|         losses: Optional[Dict[str, float]] = None,
 | |
|     ) -> Dict[str, float]:
 | |
|         """Learn from a batch of documents and gold-standard information,
 | |
|         updating the pipe's model. Delegates to predict and get_loss.
 | |
| 
 | |
|         examples (Iterable[Example]): A batch of Example objects.
 | |
|         drop (float): The dropout rate.
 | |
|         sgd (thinc.api.Optimizer): The optimizer.
 | |
|         losses (Dict[str, float]): Optional record of the loss during training.
 | |
|             Updated using the component name as the key.
 | |
|         RETURNS (Dict[str, float]): The updated losses dictionary.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/entitylinker#update
 | |
|         """
 | |
|         self.validate_kb()
 | |
|         if losses is None:
 | |
|             losses = {}
 | |
|         losses.setdefault(self.name, 0.0)
 | |
|         if not examples:
 | |
|             return losses
 | |
|         validate_examples(examples, "EntityLinker.update")
 | |
| 
 | |
|         set_dropout_rate(self.model, drop)
 | |
|         docs = [eg.predicted for eg in examples]
 | |
|         # save to restore later
 | |
|         old_ents = [doc.ents for doc in docs]
 | |
| 
 | |
|         for doc, ex in zip(docs, examples):
 | |
|             if self.use_gold_ents:
 | |
|                 ents, _ = ex.get_aligned_ents_and_ner()
 | |
|                 doc.ents = ents
 | |
|             else:
 | |
|                 # only keep matching ents
 | |
|                 doc.ents = ex.get_matching_ents()
 | |
| 
 | |
|         # make sure we have something to learn from, if not, short-circuit
 | |
|         if not self.batch_has_learnable_example(examples):
 | |
|             return losses
 | |
| 
 | |
|         sentence_encodings, bp_context = self.model.begin_update(docs)
 | |
| 
 | |
|         # now restore the ents
 | |
|         for doc, old in zip(docs, old_ents):
 | |
|             doc.ents = old
 | |
| 
 | |
|         loss, d_scores = self.get_loss(
 | |
|             sentence_encodings=sentence_encodings, examples=examples
 | |
|         )
 | |
|         bp_context(d_scores)
 | |
|         if sgd is not None:
 | |
|             self.finish_update(sgd)
 | |
|         losses[self.name] += loss
 | |
|         return losses
 | |
| 
 | |
|     def get_loss(self, examples: Iterable[Example], sentence_encodings: Floats2d):
 | |
|         validate_examples(examples, "EntityLinker.get_loss")
 | |
|         entity_encodings = []
 | |
|         eidx = 0  # indices in gold entities to keep
 | |
|         keep_ents = []  # indices in sentence_encodings to keep
 | |
| 
 | |
|         for eg in examples:
 | |
|             kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True)
 | |
| 
 | |
|             for ent in eg.get_matching_ents():
 | |
|                 kb_id = kb_ids[ent.start]
 | |
|                 if kb_id:
 | |
|                     entity_encoding = self.kb.get_vector(kb_id)
 | |
|                     entity_encodings.append(entity_encoding)
 | |
|                     keep_ents.append(eidx)
 | |
| 
 | |
|                 eidx += 1
 | |
|         entity_encodings = self.model.ops.asarray2f(entity_encodings, dtype="float32")
 | |
|         selected_encodings = sentence_encodings[keep_ents]
 | |
| 
 | |
|         # if there are no matches, short circuit
 | |
|         if not keep_ents:
 | |
|             out = self.model.ops.alloc2f(*sentence_encodings.shape)
 | |
|             return 0, out
 | |
| 
 | |
|         if selected_encodings.shape != entity_encodings.shape:
 | |
|             err = Errors.E147.format(
 | |
|                 method="get_loss", msg="gold entities do not match up"
 | |
|             )
 | |
|             raise RuntimeError(err)
 | |
|         gradients = self.distance.get_grad(selected_encodings, entity_encodings)
 | |
|         # to match the input size, we need to give a zero gradient for items not in the kb
 | |
|         out = self.model.ops.alloc2f(*sentence_encodings.shape)
 | |
|         out[keep_ents] = gradients
 | |
| 
 | |
|         loss = self.distance.get_loss(selected_encodings, entity_encodings)
 | |
|         loss = loss / len(entity_encodings)
 | |
|         return float(loss), out
 | |
| 
 | |
|     def predict(self, docs: Iterable[Doc]) -> ActivationsT:
 | |
|         """Apply the pipeline's model to a batch of docs, without modifying them.
 | |
|         Returns the KB IDs for each entity in each doc, including NIL if there is
 | |
|         no prediction.
 | |
| 
 | |
|         docs (Iterable[Doc]): The documents to predict.
 | |
|         RETURNS (List[str]): The models prediction for each document.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/entitylinker#predict
 | |
|         """
 | |
|         self.validate_kb()
 | |
|         entity_count = 0
 | |
|         final_kb_ids: List[str] = []
 | |
|         ops = self.model.ops
 | |
|         xp = ops.xp
 | |
|         docs_ents: List[Ragged] = []
 | |
|         docs_scores: List[Ragged] = []
 | |
|         if not docs:
 | |
|             return {
 | |
|                 KNOWLEDGE_BASE_IDS: final_kb_ids,
 | |
|                 "ents": docs_ents,
 | |
|                 "scores": docs_scores,
 | |
|             }
 | |
|         if isinstance(docs, Doc):
 | |
|             docs = [docs]
 | |
|         for doc in docs:
 | |
|             doc_ents: List[Ints1d] = []
 | |
|             doc_scores: List[Floats1d] = []
 | |
|             if len(doc) == 0:
 | |
|                 docs_scores.append(Ragged(ops.alloc1f(0), ops.alloc1i(0)))
 | |
|                 docs_ents.append(Ragged(xp.zeros(0, dtype="uint64"), ops.alloc1i(0)))
 | |
|                 continue
 | |
|             sentences = [s for s in doc.sents]
 | |
| 
 | |
|             # Loop over entities in batches.
 | |
|             for ent_idx in range(0, len(doc.ents), self.candidates_batch_size):
 | |
|                 ent_batch = doc.ents[ent_idx : ent_idx + self.candidates_batch_size]
 | |
| 
 | |
|                 # Look up candidate entities.
 | |
|                 valid_ent_idx = [
 | |
|                     idx
 | |
|                     for idx in range(len(ent_batch))
 | |
|                     if ent_batch[idx].label_ not in self.labels_discard
 | |
|                 ]
 | |
| 
 | |
|                 batch_candidates = list(
 | |
|                     self.get_candidates_batch(
 | |
|                         self.kb, [ent_batch[idx] for idx in valid_ent_idx]
 | |
|                     )
 | |
|                     if self.candidates_batch_size > 1
 | |
|                     else [
 | |
|                         self.get_candidates(self.kb, ent_batch[idx])
 | |
|                         for idx in valid_ent_idx
 | |
|                     ]
 | |
|                 )
 | |
| 
 | |
|                 # Looping through each entity in batch (TODO: rewrite)
 | |
|                 for j, ent in enumerate(ent_batch):
 | |
|                     sent_index = sentences.index(ent.sent)
 | |
|                     assert sent_index >= 0
 | |
| 
 | |
|                     if self.incl_context:
 | |
|                         # get n_neighbour sentences, clipped to the length of the document
 | |
|                         start_sentence = max(0, sent_index - self.n_sents)
 | |
|                         end_sentence = min(
 | |
|                             len(sentences) - 1, sent_index + self.n_sents
 | |
|                         )
 | |
|                         start_token = sentences[start_sentence].start
 | |
|                         end_token = sentences[end_sentence].end
 | |
|                         sent_doc = doc[start_token:end_token].as_doc()
 | |
|                         # currently, the context is the same for each entity in a sentence (should be refined)
 | |
|                         sentence_encoding = self.model.predict([sent_doc])[0]
 | |
|                         sentence_encoding_t = sentence_encoding.T
 | |
|                         sentence_norm = xp.linalg.norm(sentence_encoding_t)
 | |
|                     entity_count += 1
 | |
|                     if ent.label_ in self.labels_discard:
 | |
|                         # ignoring this entity - setting to NIL
 | |
|                         final_kb_ids.append(self.NIL)
 | |
|                         self._add_activations(
 | |
|                             doc_scores=doc_scores,
 | |
|                             doc_ents=doc_ents,
 | |
|                             scores=[0.0],
 | |
|                             ents=[0],
 | |
|                         )
 | |
|                     else:
 | |
|                         candidates = list(batch_candidates[j])
 | |
|                         if not candidates:
 | |
|                             # no prediction possible for this entity - setting to NIL
 | |
|                             final_kb_ids.append(self.NIL)
 | |
|                             self._add_activations(
 | |
|                                 doc_scores=doc_scores,
 | |
|                                 doc_ents=doc_ents,
 | |
|                                 scores=[0.0],
 | |
|                                 ents=[0],
 | |
|                             )
 | |
|                         elif len(candidates) == 1 and self.threshold is None:
 | |
|                             # shortcut for efficiency reasons: take the 1 candidate
 | |
|                             final_kb_ids.append(candidates[0].entity_)
 | |
|                             self._add_activations(
 | |
|                                 doc_scores=doc_scores,
 | |
|                                 doc_ents=doc_ents,
 | |
|                                 scores=[1.0],
 | |
|                                 ents=[candidates[0].entity_],
 | |
|                             )
 | |
|                         else:
 | |
|                             random.shuffle(candidates)
 | |
|                             # set all prior probabilities to 0 if incl_prior=False
 | |
|                             prior_probs = xp.asarray([c.prior_prob for c in candidates])
 | |
|                             if not self.incl_prior:
 | |
|                                 prior_probs = xp.asarray([0.0 for _ in candidates])
 | |
|                             scores = prior_probs
 | |
|                             # add in similarity from the context
 | |
|                             if self.incl_context:
 | |
|                                 entity_encodings = xp.asarray(
 | |
|                                     [c.entity_vector for c in candidates]
 | |
|                                 )
 | |
|                                 entity_norm = xp.linalg.norm(entity_encodings, axis=1)
 | |
|                                 if len(entity_encodings) != len(prior_probs):
 | |
|                                     raise RuntimeError(
 | |
|                                         Errors.E147.format(
 | |
|                                             method="predict",
 | |
|                                             msg="vectors not of equal length",
 | |
|                                         )
 | |
|                                     )
 | |
|                                 # cosine similarity
 | |
|                                 sims = xp.dot(entity_encodings, sentence_encoding_t) / (
 | |
|                                     sentence_norm * entity_norm
 | |
|                                 )
 | |
|                                 if sims.shape != prior_probs.shape:
 | |
|                                     raise ValueError(Errors.E161)
 | |
|                                 scores = prior_probs + sims - (prior_probs * sims)
 | |
|                             final_kb_ids.append(
 | |
|                                 candidates[scores.argmax().item()].entity_
 | |
|                                 if self.threshold is None
 | |
|                                 or scores.max() >= self.threshold
 | |
|                                 else EntityLinker.NIL
 | |
|                             )
 | |
|                             self._add_activations(
 | |
|                                 doc_scores=doc_scores,
 | |
|                                 doc_ents=doc_ents,
 | |
|                                 scores=scores,
 | |
|                                 ents=[c.entity for c in candidates],
 | |
|                             )
 | |
|             self._add_doc_activations(
 | |
|                 docs_scores=docs_scores,
 | |
|                 docs_ents=docs_ents,
 | |
|                 doc_scores=doc_scores,
 | |
|                 doc_ents=doc_ents,
 | |
|             )
 | |
|         if not (len(final_kb_ids) == entity_count):
 | |
|             err = Errors.E147.format(
 | |
|                 method="predict", msg="result variables not of equal length"
 | |
|             )
 | |
|             raise RuntimeError(err)
 | |
|         return {
 | |
|             KNOWLEDGE_BASE_IDS: final_kb_ids,
 | |
|             "ents": docs_ents,
 | |
|             "scores": docs_scores,
 | |
|         }
 | |
| 
 | |
|     def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT) -> None:
 | |
|         """Modify a batch of documents, using pre-computed scores.
 | |
| 
 | |
|         docs (Iterable[Doc]): The documents to modify.
 | |
|         activations (ActivationsT): The activations used for setting annotations, produced
 | |
|                                  by EntityLinker.predict.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/entitylinker#set_annotations
 | |
|         """
 | |
|         kb_ids = cast(List[str], activations[KNOWLEDGE_BASE_IDS])
 | |
|         count_ents = len([ent for doc in docs for ent in doc.ents])
 | |
|         if count_ents != len(kb_ids):
 | |
|             raise ValueError(Errors.E148.format(ents=count_ents, ids=len(kb_ids)))
 | |
|         i = 0
 | |
|         overwrite = self.cfg["overwrite"]
 | |
|         for j, doc in enumerate(docs):
 | |
|             if self.save_activations:
 | |
|                 doc.activations[self.name] = {}
 | |
|                 for act_name, acts in activations.items():
 | |
|                     if act_name != KNOWLEDGE_BASE_IDS:
 | |
|                         # We only copy activations that are Ragged.
 | |
|                         doc.activations[self.name][act_name] = cast(Ragged, acts[j])
 | |
| 
 | |
|             for ent in doc.ents:
 | |
|                 kb_id = kb_ids[i]
 | |
|                 i += 1
 | |
|                 for token in ent:
 | |
|                     if token.ent_kb_id == 0 or overwrite:
 | |
|                         token.ent_kb_id_ = kb_id
 | |
| 
 | |
|     def to_bytes(self, *, exclude=tuple()):
 | |
|         """Serialize the pipe to a bytestring.
 | |
| 
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (bytes): The serialized object.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/entitylinker#to_bytes
 | |
|         """
 | |
|         self._validate_serialization_attrs()
 | |
|         serialize = {}
 | |
|         if hasattr(self, "cfg") and self.cfg is not None:
 | |
|             serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
 | |
|         serialize["vocab"] = lambda: self.vocab.to_bytes(exclude=exclude)
 | |
|         serialize["kb"] = self.kb.to_bytes
 | |
|         serialize["model"] = self.model.to_bytes
 | |
|         return util.to_bytes(serialize, exclude)
 | |
| 
 | |
|     def from_bytes(self, bytes_data, *, exclude=tuple()):
 | |
|         """Load the pipe from a bytestring.
 | |
| 
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (TrainablePipe): The loaded object.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/entitylinker#from_bytes
 | |
|         """
 | |
|         self._validate_serialization_attrs()
 | |
| 
 | |
|         def load_model(b):
 | |
|             try:
 | |
|                 self.model.from_bytes(b)
 | |
|             except AttributeError:
 | |
|                 raise ValueError(Errors.E149) from None
 | |
| 
 | |
|         deserialize = {}
 | |
|         if hasattr(self, "cfg") and self.cfg is not None:
 | |
|             deserialize["cfg"] = lambda b: self.cfg.update(srsly.json_loads(b))
 | |
|         deserialize["vocab"] = lambda b: self.vocab.from_bytes(b, exclude=exclude)
 | |
|         deserialize["kb"] = lambda b: self.kb.from_bytes(b)
 | |
|         deserialize["model"] = load_model
 | |
|         util.from_bytes(bytes_data, deserialize, exclude)
 | |
|         return self
 | |
| 
 | |
|     def to_disk(
 | |
|         self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
 | |
|     ) -> None:
 | |
|         """Serialize the pipe to disk.
 | |
| 
 | |
|         path (str / Path): Path to a directory.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/entitylinker#to_disk
 | |
|         """
 | |
|         serialize = {}
 | |
|         serialize["vocab"] = lambda p: self.vocab.to_disk(p, exclude=exclude)
 | |
|         serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
 | |
|         serialize["kb"] = lambda p: self.kb.to_disk(p)
 | |
|         serialize["model"] = lambda p: self.model.to_disk(p)
 | |
|         util.to_disk(path, serialize, exclude)
 | |
| 
 | |
|     def from_disk(
 | |
|         self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
 | |
|     ) -> "EntityLinker":
 | |
|         """Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
|         path (str / Path): Path to a directory.
 | |
|         exclude (Iterable[str]): String names of serialization fields to exclude.
 | |
|         RETURNS (EntityLinker): The modified EntityLinker object.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/entitylinker#from_disk
 | |
|         """
 | |
| 
 | |
|         def load_model(p):
 | |
|             try:
 | |
|                 with p.open("rb") as infile:
 | |
|                     self.model.from_bytes(infile.read())
 | |
|             except AttributeError:
 | |
|                 raise ValueError(Errors.E149) from None
 | |
| 
 | |
|         deserialize: Dict[str, Callable[[Any], Any]] = {}
 | |
|         deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p))
 | |
|         deserialize["vocab"] = lambda p: self.vocab.from_disk(p, exclude=exclude)
 | |
|         deserialize["kb"] = lambda p: self.kb.from_disk(p)
 | |
|         deserialize["model"] = load_model
 | |
|         util.from_disk(path, deserialize, exclude)
 | |
|         return self
 | |
| 
 | |
|     def rehearse(self, examples, *, sgd=None, losses=None, **config):
 | |
|         raise NotImplementedError
 | |
| 
 | |
|     def add_label(self, label):
 | |
|         raise NotImplementedError
 | |
| 
 | |
|     def _add_doc_activations(
 | |
|         self,
 | |
|         *,
 | |
|         docs_scores: List[Ragged],
 | |
|         docs_ents: List[Ragged],
 | |
|         doc_scores: List[Floats1d],
 | |
|         doc_ents: List[Ints1d],
 | |
|     ):
 | |
|         if not self.save_activations:
 | |
|             return
 | |
|         ops = self.model.ops
 | |
|         lengths = ops.asarray1i([s.shape[0] for s in doc_scores])
 | |
|         docs_scores.append(Ragged(ops.flatten(doc_scores), lengths))
 | |
|         docs_ents.append(Ragged(ops.flatten(doc_ents), lengths))
 | |
| 
 | |
|     def _add_activations(
 | |
|         self,
 | |
|         *,
 | |
|         doc_scores: List[Floats1d],
 | |
|         doc_ents: List[Ints1d],
 | |
|         scores: Sequence[float],
 | |
|         ents: Sequence[int],
 | |
|     ):
 | |
|         if not self.save_activations:
 | |
|             return
 | |
|         ops = self.model.ops
 | |
|         doc_scores.append(ops.asarray1f(scores))
 | |
|         doc_ents.append(ops.asarray1i(ents, dtype="uint64"))
 |