mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-25 05:01:02 +03:00 
			
		
		
		
	* Remove backwards-compatible overwrite from Entity Linker This also adds a docstring about overwrite, since it wasn't present. * Fix docstring * Remove backward compat settings in Morphologizer This also needed a docstring added. For this component it's less clear what the right overwrite settings are. * Remove backward compat from sentencizer This was simple * Remove backward compat from senter Another simple one * Remove backward compat setting from tagger * Add docstrings * Update spacy/pipeline/morphologizer.pyx Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Update docs --------- Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
		
			
				
	
	
		
			326 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			326 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
| # cython: infer_types=True, profile=True, binding=True
 | |
| from typing import Callable, Dict, Iterable, List, Optional, Union
 | |
| import srsly
 | |
| from thinc.api import Model, Config
 | |
| from thinc.legacy import LegacySequenceCategoricalCrossentropy
 | |
| from thinc.types import Floats2d, Ints1d
 | |
| from itertools import islice
 | |
| 
 | |
| from ..tokens.doc cimport Doc
 | |
| from ..vocab cimport Vocab
 | |
| from ..morphology cimport Morphology
 | |
| 
 | |
| from ..parts_of_speech import IDS as POS_IDS
 | |
| from ..symbols import POS
 | |
| from ..language import Language
 | |
| from ..errors import Errors
 | |
| from .pipe import deserialize_config
 | |
| from .tagger import ActivationsT, Tagger
 | |
| from .. import util
 | |
| from ..scorer import Scorer
 | |
| from ..training import validate_examples, validate_get_examples
 | |
| from ..util import registry
 | |
| 
 | |
| default_model_config = """
 | |
| [model]
 | |
| @architectures = "spacy.Tagger.v2"
 | |
| 
 | |
| [model.tok2vec]
 | |
| @architectures = "spacy.Tok2Vec.v2"
 | |
| 
 | |
| [model.tok2vec.embed]
 | |
| @architectures = "spacy.CharacterEmbed.v2"
 | |
| width = 128
 | |
| rows = 7000
 | |
| nM = 64
 | |
| nC = 8
 | |
| include_static_vectors = false
 | |
| 
 | |
| [model.tok2vec.encode]
 | |
| @architectures = "spacy.MaxoutWindowEncoder.v2"
 | |
| width = 128
 | |
| depth = 4
 | |
| window_size = 1
 | |
| maxout_pieces = 3
 | |
| """
 | |
| 
 | |
| DEFAULT_MORPH_MODEL = Config().from_str(default_model_config)["model"]
 | |
| 
 | |
| 
 | |
| @Language.factory(
 | |
|     "morphologizer",
 | |
|     assigns=["token.morph", "token.pos"],
 | |
|     default_config={
 | |
|         "model": DEFAULT_MORPH_MODEL,
 | |
|         "overwrite": True,
 | |
|         "extend": False,
 | |
|         "scorer": {"@scorers": "spacy.morphologizer_scorer.v1"},
 | |
|         "save_activations": False,
 | |
|     },
 | |
|     default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5, "morph_per_feat": None},
 | |
| )
 | |
| def make_morphologizer(
 | |
|     nlp: Language,
 | |
|     model: Model,
 | |
|     name: str,
 | |
|     overwrite: bool,
 | |
|     extend: bool,
 | |
|     scorer: Optional[Callable],
 | |
|     save_activations: bool,
 | |
| ):
 | |
|     return Morphologizer(nlp.vocab, model, name, overwrite=overwrite, extend=extend, scorer=scorer,
 | |
|                          save_activations=save_activations)
 | |
| 
 | |
| 
 | |
| def morphologizer_score(examples, **kwargs):
 | |
|     def morph_key_getter(token, attr):
 | |
|         return getattr(token, attr).key
 | |
| 
 | |
|     results = {}
 | |
|     results.update(Scorer.score_token_attr(examples, "pos", **kwargs))
 | |
|     results.update(Scorer.score_token_attr(examples, "morph", getter=morph_key_getter, **kwargs))
 | |
|     results.update(Scorer.score_token_attr_per_feat(examples,
 | |
|         "morph", getter=morph_key_getter, **kwargs))
 | |
|     return results
 | |
| 
 | |
| 
 | |
| @registry.scorers("spacy.morphologizer_scorer.v1")
 | |
| def make_morphologizer_scorer():
 | |
|     return morphologizer_score
 | |
| 
 | |
| 
 | |
| class Morphologizer(Tagger):
 | |
|     POS_FEAT = "POS"
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         vocab: Vocab,
 | |
|         model: Model,
 | |
|         name: str = "morphologizer",
 | |
|         *,
 | |
|         overwrite: bool = False,
 | |
|         extend: bool = False,
 | |
|         scorer: Optional[Callable] = morphologizer_score,
 | |
|         save_activations: bool = False,
 | |
|     ):
 | |
|         """Initialize a morphologizer.
 | |
| 
 | |
|         vocab (Vocab): The shared vocabulary.
 | |
|         model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | |
|         name (str): The component instance name, used to add entries to the
 | |
|             losses during training.
 | |
|         overwrite (bool): Whether to overwrite existing annotations.
 | |
|         extend (bool): Whether to extend existing annotations.
 | |
|         scorer (Optional[Callable]): The scoring method. Defaults to
 | |
|             Scorer.score_token_attr for the attributes "pos" and "morph" and
 | |
|             Scorer.score_token_attr_per_feat for the attribute "morph".
 | |
|         save_activations (bool): save model activations in Doc when annotating.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/morphologizer#init
 | |
|         """
 | |
|         self.vocab = vocab
 | |
|         self.model = model
 | |
|         self.name = name
 | |
|         self._rehearsal_model = None
 | |
|         # to be able to set annotations without string operations on labels,
 | |
|         # store mappings from morph+POS labels to token-level annotations:
 | |
|         # 1) labels_morph stores a mapping from morph+POS->morph
 | |
|         # 2) labels_pos stores a mapping from morph+POS->POS
 | |
|         cfg = {
 | |
|             "labels_morph": {},
 | |
|             "labels_pos": {},
 | |
|             "overwrite": overwrite,
 | |
|             "extend": extend,
 | |
|         }
 | |
|         self.cfg = dict(sorted(cfg.items()))
 | |
|         self.scorer = scorer
 | |
|         self.save_activations = save_activations
 | |
| 
 | |
|     @property
 | |
|     def labels(self):
 | |
|         """RETURNS (Iterable[str]): The labels currently added to the component."""
 | |
|         return self.cfg["labels_morph"].keys()
 | |
| 
 | |
|     @property
 | |
|     def label_data(self) -> Dict[str, Dict[str, Union[str, float, int, None]]]:
 | |
|         """A dictionary with all labels data."""
 | |
|         return {"morph": self.cfg["labels_morph"], "pos": self.cfg["labels_pos"]}
 | |
| 
 | |
|     def add_label(self, label):
 | |
|         """Add a new label to the pipe.
 | |
| 
 | |
|         label (str): The label to add.
 | |
|         RETURNS (int): 0 if label is already present, otherwise 1.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/morphologizer#add_label
 | |
|         """
 | |
|         if not isinstance(label, str):
 | |
|             raise ValueError(Errors.E187)
 | |
|         if label in self.labels:
 | |
|             return 0
 | |
|         self._allow_extra_label()
 | |
|         # normalize label
 | |
|         norm_label = self.vocab.morphology.normalize_features(label)
 | |
|         # extract separate POS and morph tags
 | |
|         label_dict = Morphology.feats_to_dict(label, sort_values=False)
 | |
|         pos = label_dict.get(self.POS_FEAT, "")
 | |
|         if self.POS_FEAT in label_dict:
 | |
|             label_dict.pop(self.POS_FEAT)
 | |
|         # normalize morph string and add to morphology table
 | |
|         norm_morph = self.vocab.strings[self.vocab.morphology.add(label_dict)]
 | |
|         # add label mappings
 | |
|         if norm_label not in self.cfg["labels_morph"]:
 | |
|             self.cfg["labels_morph"][norm_label] = norm_morph
 | |
|             self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
 | |
|         return 1
 | |
| 
 | |
|     def initialize(self, get_examples, *, nlp=None, labels=None):
 | |
|         """Initialize the pipe for training, using a representative set
 | |
|         of data examples.
 | |
| 
 | |
|         get_examples (Callable[[], Iterable[Example]]): Function that
 | |
|             returns a representative sample of gold-standard Example objects.
 | |
|         nlp (Language): The current nlp object the component is part of.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/morphologizer#initialize
 | |
|         """
 | |
|         validate_get_examples(get_examples, "Morphologizer.initialize")
 | |
|         util.check_lexeme_norms(self.vocab, "morphologizer")
 | |
|         if labels is not None:
 | |
|             self.cfg["labels_morph"] = labels["morph"]
 | |
|             self.cfg["labels_pos"] = labels["pos"]
 | |
|         else:
 | |
|             # First, fetch all labels from the data
 | |
|             for example in get_examples():
 | |
|                 for i, token in enumerate(example.reference):
 | |
|                     pos = token.pos_
 | |
|                     # if both are unset, annotation is missing, so do not add
 | |
|                     # an empty label
 | |
|                     if pos == "" and not token.has_morph():
 | |
|                         continue
 | |
|                     morph = str(token.morph)
 | |
|                     # create and add the combined morph+POS label
 | |
|                     morph_dict = Morphology.feats_to_dict(morph, sort_values=False)
 | |
|                     if pos:
 | |
|                         morph_dict[self.POS_FEAT] = pos
 | |
|                     norm_label = self.vocab.strings[self.vocab.morphology.add(morph_dict)]
 | |
|                     # add label->morph and label->POS mappings
 | |
|                     if norm_label not in self.cfg["labels_morph"]:
 | |
|                         self.cfg["labels_morph"][norm_label] = morph
 | |
|                         self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
 | |
|         if len(self.labels) < 1:
 | |
|             raise ValueError(Errors.E143.format(name=self.name))
 | |
|         doc_sample = []
 | |
|         label_sample = []
 | |
|         for example in islice(get_examples(), 10):
 | |
|             gold_array = []
 | |
|             for i, token in enumerate(example.reference):
 | |
|                 pos = token.pos_
 | |
|                 morph = str(token.morph)
 | |
|                 morph_dict = Morphology.feats_to_dict(morph, sort_values=False)
 | |
|                 if pos:
 | |
|                     morph_dict[self.POS_FEAT] = pos
 | |
|                 norm_label = self.vocab.strings[self.vocab.morphology.add(morph_dict)]
 | |
|                 gold_array.append([1.0 if label == norm_label else 0.0 for label in self.labels])
 | |
|             doc_sample.append(example.x)
 | |
|             label_sample.append(self.model.ops.asarray(gold_array, dtype="float32"))
 | |
|         assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
 | |
|         assert len(label_sample) > 0, Errors.E923.format(name=self.name)
 | |
|         self.model.initialize(X=doc_sample, Y=label_sample)
 | |
| 
 | |
|     def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT):
 | |
|         """Modify a batch of documents, using pre-computed scores.
 | |
| 
 | |
|         docs (Iterable[Doc]): The documents to modify.
 | |
|         activations (ActivationsT): The activations used for setting annotations, produced by Morphologizer.predict.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/morphologizer#set_annotations
 | |
|         """
 | |
|         batch_tag_ids = activations["label_ids"]
 | |
|         if isinstance(docs, Doc):
 | |
|             docs = [docs]
 | |
|         cdef Doc doc
 | |
|         cdef Vocab vocab = self.vocab
 | |
|         cdef bint overwrite = self.cfg["overwrite"]
 | |
|         cdef bint extend = self.cfg["extend"]
 | |
| 
 | |
|         # We require random access for the upcoming ops, so we need
 | |
|         # to allocate a compatible container out of the iterable.
 | |
|         labels = tuple(self.labels)
 | |
|         for i, doc in enumerate(docs):
 | |
|             if self.save_activations:
 | |
|                 doc.activations[self.name] = {}
 | |
|                 for act_name, acts in activations.items():
 | |
|                     doc.activations[self.name][act_name] = acts[i]
 | |
|             doc_tag_ids = batch_tag_ids[i]
 | |
|             if hasattr(doc_tag_ids, "get"):
 | |
|                 doc_tag_ids = doc_tag_ids.get()
 | |
|             for j, tag_id in enumerate(doc_tag_ids):
 | |
|                 morph = labels[int(tag_id)]
 | |
|                 # set morph
 | |
|                 if doc.c[j].morph == 0 or overwrite or extend:
 | |
|                     if overwrite and extend:
 | |
|                         # morphologizer morph overwrites any existing features
 | |
|                         # while extending
 | |
|                         extended_morph = Morphology.feats_to_dict(self.vocab.strings[doc.c[j].morph], sort_values=False)
 | |
|                         extended_morph.update(Morphology.feats_to_dict(self.cfg["labels_morph"].get(morph, 0), sort_values=False))
 | |
|                         doc.c[j].morph = self.vocab.morphology.add(extended_morph)
 | |
|                     elif extend:
 | |
|                         # existing features are preserved and any new features
 | |
|                         # are added
 | |
|                         extended_morph = Morphology.feats_to_dict(self.cfg["labels_morph"].get(morph, 0), sort_values=False)
 | |
|                         extended_morph.update(Morphology.feats_to_dict(self.vocab.strings[doc.c[j].morph], sort_values=False))
 | |
|                         doc.c[j].morph = self.vocab.morphology.add(extended_morph)
 | |
|                     else:
 | |
|                         # clobber
 | |
|                         doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels_morph"].get(morph, 0))
 | |
|                 # set POS
 | |
|                 if doc.c[j].pos == 0 or overwrite:
 | |
|                     doc.c[j].pos = self.cfg["labels_pos"].get(morph, 0)
 | |
| 
 | |
|     def get_loss(self, examples, scores):
 | |
|         """Find the loss and gradient of loss for the batch of documents and
 | |
|         their predicted scores.
 | |
| 
 | |
|         examples (Iterable[Examples]): The batch of examples.
 | |
|         scores: Scores representing the model's predictions.
 | |
|         RETURNS (Tuple[float, float]): The loss and the gradient.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/morphologizer#get_loss
 | |
|         """
 | |
|         validate_examples(examples, "Morphologizer.get_loss")
 | |
|         loss_func = LegacySequenceCategoricalCrossentropy(names=tuple(self.labels), normalize=False)
 | |
|         truths = []
 | |
|         for eg in examples:
 | |
|             eg_truths = []
 | |
|             pos_tags = eg.get_aligned("POS", as_string=True)
 | |
|             morphs = eg.get_aligned("MORPH", as_string=True)
 | |
|             for i in range(len(morphs)):
 | |
|                 pos = pos_tags[i]
 | |
|                 morph = morphs[i]
 | |
|                 # POS may align (same value for multiple tokens) when morph
 | |
|                 # doesn't, so if either is misaligned (None), treat the
 | |
|                 # annotation as missing so that truths doesn't end up with an
 | |
|                 # unknown morph+POS combination
 | |
|                 if pos is None or morph is None:
 | |
|                     label = None
 | |
|                 # If both are unset, the annotation is missing (empty morph
 | |
|                 # converted from int is "_" rather than "")
 | |
|                 elif pos == "" and morph == "":
 | |
|                     label = None
 | |
|                 # Otherwise, generate the combined label
 | |
|                 else:
 | |
|                     label_dict = Morphology.feats_to_dict(morph, sort_values=False)
 | |
|                     if pos:
 | |
|                         label_dict[self.POS_FEAT] = pos
 | |
|                     label = self.vocab.strings[self.vocab.morphology.add(label_dict)]
 | |
|                     # As a fail-safe, skip any unrecognized labels
 | |
|                     if label not in self.labels:
 | |
|                         label = None
 | |
|                 eg_truths.append(label)
 | |
|             truths.append(eg_truths)
 | |
|         d_scores, loss = loss_func(scores, truths)
 | |
|         if self.model.ops.xp.isnan(loss):
 | |
|             raise ValueError(Errors.E910.format(name=self.name))
 | |
|         return float(loss), d_scores
 |