mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-25 05:01:02 +03:00 
			
		
		
		
	* Remove backwards-compatible overwrite from Entity Linker This also adds a docstring about overwrite, since it wasn't present. * Fix docstring * Remove backward compat settings in Morphologizer This also needed a docstring added. For this component it's less clear what the right overwrite settings are. * Remove backward compat from sentencizer This was simple * Remove backward compat from senter Another simple one * Remove backward compat setting from tagger * Add docstrings * Update spacy/pipeline/morphologizer.pyx Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Update docs --------- Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
		
			
				
	
	
		
			364 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
| # cython: infer_types=True, profile=True, binding=True
 | |
| from typing import Callable, Dict, Iterable, List, Optional, Union
 | |
| from typing import Tuple
 | |
| import numpy
 | |
| import srsly
 | |
| from thinc.api import Model, set_dropout_rate, Config
 | |
| from thinc.legacy import LegacySequenceCategoricalCrossentropy
 | |
| from thinc.types import Floats2d, Ints1d
 | |
| import warnings
 | |
| from itertools import islice
 | |
| 
 | |
| from ..tokens.doc cimport Doc
 | |
| from ..morphology cimport Morphology
 | |
| from ..vocab cimport Vocab
 | |
| 
 | |
| from .trainable_pipe import TrainablePipe
 | |
| from .pipe import deserialize_config
 | |
| from ..language import Language
 | |
| from ..attrs import POS, ID
 | |
| from ..parts_of_speech import X
 | |
| from ..errors import Errors, Warnings
 | |
| from ..scorer import Scorer
 | |
| from ..training import validate_examples, validate_get_examples
 | |
| from ..util import registry
 | |
| from .. import util
 | |
| 
 | |
| 
 | |
| ActivationsT = Dict[str, Union[List[Floats2d], List[Ints1d]]]
 | |
| 
 | |
| default_model_config = """
 | |
| [model]
 | |
| @architectures = "spacy.Tagger.v2"
 | |
| 
 | |
| [model.tok2vec]
 | |
| @architectures = "spacy.HashEmbedCNN.v2"
 | |
| pretrained_vectors = null
 | |
| width = 96
 | |
| depth = 4
 | |
| embed_size = 2000
 | |
| window_size = 1
 | |
| maxout_pieces = 3
 | |
| subword_features = true
 | |
| """
 | |
| DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"]
 | |
| 
 | |
| 
 | |
| @Language.factory(
 | |
|     "tagger",
 | |
|     assigns=["token.tag"],
 | |
|     default_config={
 | |
|         "model": DEFAULT_TAGGER_MODEL,
 | |
|         "overwrite": False,
 | |
|         "scorer": {"@scorers": "spacy.tagger_scorer.v1"},
 | |
|         "neg_prefix": "!",
 | |
|         "save_activations": False,
 | |
|     },
 | |
|     default_score_weights={"tag_acc": 1.0},
 | |
| )
 | |
| def make_tagger(
 | |
|     nlp: Language,
 | |
|     name: str,
 | |
|     model: Model,
 | |
|     overwrite: bool,
 | |
|     scorer: Optional[Callable],
 | |
|     neg_prefix: str,
 | |
|     save_activations: bool,
 | |
| ):
 | |
|     """Construct a part-of-speech tagger component.
 | |
| 
 | |
|     model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
 | |
|         the tag probabilities. The output vectors should match the number of tags
 | |
|         in size, and be normalized as probabilities (all scores between 0 and 1,
 | |
|         with the rows summing to 1).
 | |
|     """
 | |
|     return Tagger(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer, neg_prefix=neg_prefix,
 | |
|                   save_activations=save_activations)
 | |
| 
 | |
| 
 | |
| def tagger_score(examples, **kwargs):
 | |
|     return Scorer.score_token_attr(examples, "tag", **kwargs)
 | |
| 
 | |
| 
 | |
| @registry.scorers("spacy.tagger_scorer.v1")
 | |
| def make_tagger_scorer():
 | |
|     return tagger_score
 | |
| 
 | |
| 
 | |
| class Tagger(TrainablePipe):
 | |
|     """Pipeline component for part-of-speech tagging.
 | |
| 
 | |
|     DOCS: https://spacy.io/api/tagger
 | |
|     """
 | |
|     def __init__(
 | |
|         self,
 | |
|         vocab,
 | |
|         model,
 | |
|         name="tagger",
 | |
|         *,
 | |
|         overwrite=False,
 | |
|         scorer=tagger_score,
 | |
|         neg_prefix="!",
 | |
|         save_activations: bool = False,
 | |
|     ):
 | |
|         """Initialize a part-of-speech tagger.
 | |
| 
 | |
|         vocab (Vocab): The shared vocabulary.
 | |
|         model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | |
|         name (str): The component instance name, used to add entries to the
 | |
|             losses during training.
 | |
|         overwrite (bool): Whether to overwrite existing annotations.
 | |
|         scorer (Optional[Callable]): The scoring method. Defaults to
 | |
|             Scorer.score_token_attr for the attribute "tag".
 | |
|         save_activations (bool): save model activations in Doc when annotating.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/tagger#init
 | |
|         """
 | |
|         self.vocab = vocab
 | |
|         self.model = model
 | |
|         self.name = name
 | |
|         self._rehearsal_model = None
 | |
|         cfg = {"labels": [], "overwrite": overwrite, "neg_prefix": neg_prefix}
 | |
|         self.cfg = dict(sorted(cfg.items()))
 | |
|         self.scorer = scorer
 | |
|         self.save_activations = save_activations
 | |
| 
 | |
|     @property
 | |
|     def labels(self):
 | |
|         """The labels currently added to the component. Note that even for a
 | |
|         blank component, this will always include the built-in coarse-grained
 | |
|         part-of-speech tags by default.
 | |
| 
 | |
|         RETURNS (Tuple[str]): The labels.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/tagger#labels
 | |
|         """
 | |
|         return tuple(self.cfg["labels"])
 | |
| 
 | |
|     @property
 | |
|     def label_data(self):
 | |
|         """Data about the labels currently added to the component."""
 | |
|         return tuple(self.cfg["labels"])
 | |
| 
 | |
|     def predict(self, docs) -> ActivationsT:
 | |
|         """Apply the pipeline's model to a batch of docs, without modifying them.
 | |
| 
 | |
|         docs (Iterable[Doc]): The documents to predict.
 | |
|         RETURNS: The models prediction for each document.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/tagger#predict
 | |
|         """
 | |
|         if not any(len(doc) for doc in docs):
 | |
|             # Handle cases where there are no tokens in any docs.
 | |
|             n_labels = len(self.labels)
 | |
|             guesses = [self.model.ops.alloc((0, n_labels)) for doc in docs]
 | |
|             assert len(guesses) == len(docs)
 | |
|             return {"probabilities": guesses, "label_ids": guesses}
 | |
|         scores = self.model.predict(docs)
 | |
|         assert len(scores) == len(docs), (len(scores), len(docs))
 | |
|         guesses = self._scores2guesses(scores)
 | |
|         assert len(guesses) == len(docs)
 | |
|         return {"probabilities": scores, "label_ids": guesses}
 | |
| 
 | |
|     def _scores2guesses(self, scores):
 | |
|         guesses = []
 | |
|         for doc_scores in scores:
 | |
|             doc_guesses = doc_scores.argmax(axis=1)
 | |
|             if not isinstance(doc_guesses, numpy.ndarray):
 | |
|                 doc_guesses = doc_guesses.get()
 | |
|             guesses.append(doc_guesses)
 | |
|         return guesses
 | |
| 
 | |
|     def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT):
 | |
|         """Modify a batch of documents, using pre-computed scores.
 | |
| 
 | |
|         docs (Iterable[Doc]): The documents to modify.
 | |
|         activations (ActivationsT): The activations used for setting annotations, produced by Tagger.predict.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/tagger#set_annotations
 | |
|         """
 | |
|         batch_tag_ids = activations["label_ids"]
 | |
|         if isinstance(docs, Doc):
 | |
|             docs = [docs]
 | |
|         cdef Doc doc
 | |
|         cdef Vocab vocab = self.vocab
 | |
|         cdef bint overwrite = self.cfg["overwrite"]
 | |
|         labels = self.labels
 | |
|         for i, doc in enumerate(docs):
 | |
|             if self.save_activations:
 | |
|                 doc.activations[self.name] = {}
 | |
|                 for act_name, acts in activations.items():
 | |
|                     doc.activations[self.name][act_name] = acts[i]
 | |
|             doc_tag_ids = batch_tag_ids[i]
 | |
|             if hasattr(doc_tag_ids, "get"):
 | |
|                 doc_tag_ids = doc_tag_ids.get()
 | |
|             for j, tag_id in enumerate(doc_tag_ids):
 | |
|                 if doc.c[j].tag == 0 or overwrite:
 | |
|                     doc.c[j].tag = self.vocab.strings[labels[tag_id]]
 | |
| 
 | |
|     def update(self, examples, *, drop=0., sgd=None, losses=None):
 | |
|         """Learn from a batch of documents and gold-standard information,
 | |
|         updating the pipe's model. Delegates to predict and get_loss.
 | |
| 
 | |
|         examples (Iterable[Example]): A batch of Example objects.
 | |
|         drop (float): The dropout rate.
 | |
|         sgd (thinc.api.Optimizer): The optimizer.
 | |
|         losses (Dict[str, float]): Optional record of the loss during training.
 | |
|             Updated using the component name as the key.
 | |
|         RETURNS (Dict[str, float]): The updated losses dictionary.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/tagger#update
 | |
|         """
 | |
|         if losses is None:
 | |
|             losses = {}
 | |
|         losses.setdefault(self.name, 0.0)
 | |
|         validate_examples(examples, "Tagger.update")
 | |
|         if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
 | |
|             # Handle cases where there are no tokens in any docs.
 | |
|             return losses
 | |
|         set_dropout_rate(self.model, drop)
 | |
|         tag_scores, bp_tag_scores = self.model.begin_update([eg.predicted for eg in examples])
 | |
|         for sc in tag_scores:
 | |
|             if self.model.ops.xp.isnan(sc.sum()):
 | |
|                 raise ValueError(Errors.E940)
 | |
|         loss, d_tag_scores = self.get_loss(examples, tag_scores)
 | |
|         bp_tag_scores(d_tag_scores)
 | |
|         if sgd not in (None, False):
 | |
|             self.finish_update(sgd)
 | |
| 
 | |
|         losses[self.name] += loss
 | |
|         return losses
 | |
| 
 | |
|     def rehearse(self, examples, *, drop=0., sgd=None, losses=None):
 | |
|         """Perform a "rehearsal" update from a batch of data. Rehearsal updates
 | |
|         teach the current model to make predictions similar to an initial model,
 | |
|         to try to address the "catastrophic forgetting" problem. This feature is
 | |
|         experimental.
 | |
| 
 | |
|         examples (Iterable[Example]): A batch of Example objects.
 | |
|         drop (float): The dropout rate.
 | |
|         sgd (thinc.api.Optimizer): The optimizer.
 | |
|         losses (Dict[str, float]): Optional record of the loss during training.
 | |
|             Updated using the component name as the key.
 | |
|         RETURNS (Dict[str, float]): The updated losses dictionary.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/tagger#rehearse
 | |
|         """
 | |
|         if losses is None:
 | |
|             losses = {}
 | |
|         losses.setdefault(self.name, 0.0)
 | |
|         validate_examples(examples, "Tagger.rehearse")
 | |
|         docs = [eg.predicted for eg in examples]
 | |
|         if self._rehearsal_model is None:
 | |
|             return losses
 | |
|         if not any(len(doc) for doc in docs):
 | |
|             # Handle cases where there are no tokens in any docs.
 | |
|             return losses
 | |
|         set_dropout_rate(self.model, drop)
 | |
|         tag_scores, bp_tag_scores = self.model.begin_update(docs)
 | |
|         tutor_tag_scores, _ = self._rehearsal_model.begin_update(docs)
 | |
|         loss, grads = self.get_teacher_student_loss(tutor_tag_scores, tag_scores)
 | |
|         bp_tag_scores(grads)
 | |
|         if sgd is not None:
 | |
|             self.finish_update(sgd)
 | |
|         losses[self.name] += loss
 | |
|         return losses
 | |
| 
 | |
|     def get_teacher_student_loss(
 | |
|         self, teacher_scores: List[Floats2d], student_scores: List[Floats2d]
 | |
|     ) -> Tuple[float, List[Floats2d]]:
 | |
|         """Calculate the loss and its gradient for a batch of student
 | |
|         scores, relative to teacher scores.
 | |
| 
 | |
|         teacher_scores: Scores representing the teacher model's predictions.
 | |
|         student_scores: Scores representing the student model's predictions.
 | |
| 
 | |
|         RETURNS (Tuple[float, float]): The loss and the gradient.
 | |
|         
 | |
|         DOCS: https://spacy.io/api/tagger#get_teacher_student_loss
 | |
|         """
 | |
|         loss_func = LegacySequenceCategoricalCrossentropy(normalize=False)
 | |
|         d_scores, loss = loss_func(student_scores, teacher_scores)
 | |
|         if self.model.ops.xp.isnan(loss):
 | |
|             raise ValueError(Errors.E910.format(name=self.name))
 | |
|         return float(loss), d_scores
 | |
| 
 | |
|     def get_loss(self, examples, scores):
 | |
|         """Find the loss and gradient of loss for the batch of documents and
 | |
|         their predicted scores.
 | |
| 
 | |
|         examples (Iterable[Examples]): The batch of examples.
 | |
|         scores: Scores representing the model's predictions.
 | |
|         RETURNS (Tuple[float, float]): The loss and the gradient.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/tagger#get_loss
 | |
|         """
 | |
|         validate_examples(examples, "Tagger.get_loss")
 | |
|         loss_func = LegacySequenceCategoricalCrossentropy(names=self.labels, normalize=False, neg_prefix=self.cfg["neg_prefix"])
 | |
|         # Convert empty tag "" to missing value None so that both misaligned
 | |
|         # tokens and tokens with missing annotation have the default missing
 | |
|         # value None.
 | |
|         truths = []
 | |
|         for eg in examples:
 | |
|             eg_truths = [tag if tag is not "" else None for tag in eg.get_aligned("TAG", as_string=True)]
 | |
|             truths.append(eg_truths)
 | |
|         d_scores, loss = loss_func(scores, truths)
 | |
|         if self.model.ops.xp.isnan(loss):
 | |
|             raise ValueError(Errors.E910.format(name=self.name))
 | |
|         return float(loss), d_scores
 | |
| 
 | |
|     def initialize(self, get_examples, *, nlp=None, labels=None):
 | |
|         """Initialize the pipe for training, using a representative set
 | |
|         of data examples.
 | |
| 
 | |
|         get_examples (Callable[[], Iterable[Example]]): Function that
 | |
|             returns a representative sample of gold-standard Example objects..
 | |
|         nlp (Language): The current nlp object the component is part of.
 | |
|         labels: The labels to add to the component, typically generated by the
 | |
|             `init labels` command. If no labels are provided, the get_examples
 | |
|             callback is used to extract the labels from the data.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/tagger#initialize
 | |
|         """
 | |
|         validate_get_examples(get_examples, "Tagger.initialize")
 | |
|         util.check_lexeme_norms(self.vocab, "tagger")
 | |
|         if labels is not None:
 | |
|             for tag in labels:
 | |
|                 self.add_label(tag)
 | |
|         else:
 | |
|             tags = set()
 | |
|             for example in get_examples():
 | |
|                 for token in example.y:
 | |
|                     if token.tag_:
 | |
|                         tags.add(token.tag_)
 | |
|             for tag in sorted(tags):
 | |
|                 self.add_label(tag)
 | |
|         doc_sample = []
 | |
|         label_sample = []
 | |
|         for example in islice(get_examples(), 10):
 | |
|             doc_sample.append(example.x)
 | |
|             gold_tags = example.get_aligned("TAG", as_string=True)
 | |
|             gold_array = [[1.0 if tag == gold_tag else 0.0 for tag in self.labels] for gold_tag in gold_tags]
 | |
|             label_sample.append(self.model.ops.asarray(gold_array, dtype="float32"))
 | |
|         self._require_labels()
 | |
|         assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
 | |
|         assert len(label_sample) > 0, Errors.E923.format(name=self.name)
 | |
|         self.model.initialize(X=doc_sample, Y=label_sample)
 | |
| 
 | |
|     def add_label(self, label):
 | |
|         """Add a new label to the pipe.
 | |
| 
 | |
|         label (str): The label to add.
 | |
|         RETURNS (int): 0 if label is already present, otherwise 1.
 | |
| 
 | |
|         DOCS: https://spacy.io/api/tagger#add_label
 | |
|         """
 | |
|         if not isinstance(label, str):
 | |
|             raise ValueError(Errors.E187)
 | |
|         if label in self.labels:
 | |
|             return 0
 | |
|         self._allow_extra_label()
 | |
|         self.cfg["labels"].append(label)
 | |
|         self.vocab.strings.add(label)
 | |
|         return 1
 |