mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			240 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			240 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python
 | 
						|
from __future__ import division
 | 
						|
from __future__ import unicode_literals
 | 
						|
from __future__ import print_function
 | 
						|
 | 
						|
import os
 | 
						|
from os import path
 | 
						|
import shutil
 | 
						|
import io
 | 
						|
import random
 | 
						|
 | 
						|
import plac
 | 
						|
import re
 | 
						|
 | 
						|
import spacy.util
 | 
						|
from spacy.en import English
 | 
						|
 | 
						|
from spacy.syntax.util import Config
 | 
						|
from spacy.gold import read_json_file
 | 
						|
from spacy.gold import GoldParse
 | 
						|
 | 
						|
from spacy.scorer import Scorer
 | 
						|
 | 
						|
from spacy.syntax.arc_eager import ArcEager
 | 
						|
from spacy.syntax.ner import BiluoPushDown
 | 
						|
from spacy.tagger import Tagger
 | 
						|
from spacy.syntax.parser import Parser
 | 
						|
 | 
						|
 | 
						|
def _corrupt(c, noise_level):
 | 
						|
    if random.random() >= noise_level:
 | 
						|
        return c
 | 
						|
    elif c == ' ':
 | 
						|
        return '\n'
 | 
						|
    elif c == '\n':
 | 
						|
        return ' '
 | 
						|
    elif c in ['.', "'", "!", "?"]:
 | 
						|
        return ''
 | 
						|
    else:
 | 
						|
        return c.lower()
 | 
						|
 | 
						|
 | 
						|
def add_noise(orig, noise_level):
 | 
						|
    if random.random() >= noise_level:
 | 
						|
        return orig
 | 
						|
    elif type(orig) == list:
 | 
						|
        corrupted = [_corrupt(word, noise_level) for word in orig]
 | 
						|
        corrupted = [w for w in corrupted if w]
 | 
						|
        return corrupted
 | 
						|
    else:
 | 
						|
        return ''.join(_corrupt(c, noise_level) for c in orig)
 | 
						|
 | 
						|
 | 
						|
def score_model(scorer, nlp, raw_text, annot_tuples, verbose=False):
 | 
						|
    if raw_text is None:
 | 
						|
        tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
 | 
						|
    else:
 | 
						|
        tokens = nlp.tokenizer(raw_text)
 | 
						|
    nlp.tagger(tokens)
 | 
						|
    nlp.entity(tokens)
 | 
						|
    nlp.parser(tokens)
 | 
						|
    gold = GoldParse(tokens, annot_tuples)
 | 
						|
    scorer.score(tokens, gold, verbose=verbose)
 | 
						|
 | 
						|
 | 
						|
def _merge_sents(sents):
 | 
						|
    m_deps = [[], [], [], [], [], []]
 | 
						|
    m_brackets = []
 | 
						|
    i = 0
 | 
						|
    for (ids, words, tags, heads, labels, ner), brackets in sents:
 | 
						|
        m_deps[0].extend(id_ + i for id_ in ids)
 | 
						|
        m_deps[1].extend(words)
 | 
						|
        m_deps[2].extend(tags)
 | 
						|
        m_deps[3].extend(head + i for head in heads)
 | 
						|
        m_deps[4].extend(labels)
 | 
						|
        m_deps[5].extend(ner)
 | 
						|
        m_brackets.extend((b['first'] + i, b['last'] + i, b['label']) for b in brackets)
 | 
						|
        i += len(ids)
 | 
						|
    return [(m_deps, m_brackets)]
 | 
						|
 | 
						|
 | 
						|
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
 | 
						|
          seed=0, gold_preproc=False, n_sents=0, corruption_level=0,
 | 
						|
          beam_width=1, verbose=False,
 | 
						|
          use_orig_arc_eager=False):
 | 
						|
    dep_model_dir = path.join(model_dir, 'deps')
 | 
						|
    ner_model_dir = path.join(model_dir, 'ner')
 | 
						|
    pos_model_dir = path.join(model_dir, 'pos')
 | 
						|
    if path.exists(dep_model_dir):
 | 
						|
        shutil.rmtree(dep_model_dir)
 | 
						|
    if path.exists(ner_model_dir):
 | 
						|
        shutil.rmtree(ner_model_dir)
 | 
						|
    if path.exists(pos_model_dir):
 | 
						|
        shutil.rmtree(pos_model_dir)
 | 
						|
    os.mkdir(dep_model_dir)
 | 
						|
    os.mkdir(ner_model_dir)
 | 
						|
    os.mkdir(pos_model_dir)
 | 
						|
 | 
						|
    Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
 | 
						|
                 labels=ArcEager.get_labels(gold_tuples),
 | 
						|
                 beam_width=beam_width)
 | 
						|
    Config.write(ner_model_dir, 'config', features='ner', seed=seed,
 | 
						|
                 labels=BiluoPushDown.get_labels(gold_tuples),
 | 
						|
                 beam_width=0)
 | 
						|
 | 
						|
    if n_sents > 0:
 | 
						|
        gold_tuples = gold_tuples[:n_sents]
 | 
						|
 | 
						|
    nlp = Language(data_dir=model_dir, tagger=False, parser=False, entity=False)
 | 
						|
    nlp.tagger = Tagger.blank(nlp.vocab, Tagger.default_templates())
 | 
						|
    nlp.parser = Parser.from_dir(dep_model_dir, nlp.vocab.strings, ArcEager)
 | 
						|
    nlp.entity = Parser.from_dir(ner_model_dir, nlp.vocab.strings, BiluoPushDown)
 | 
						|
    print("Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %")
 | 
						|
    for itn in range(n_iter):
 | 
						|
        scorer = Scorer()
 | 
						|
        loss = 0
 | 
						|
        for raw_text, sents in gold_tuples:
 | 
						|
            if gold_preproc:
 | 
						|
                raw_text = None
 | 
						|
            else:
 | 
						|
                sents = _merge_sents(sents)
 | 
						|
            for annot_tuples, ctnt in sents:
 | 
						|
                if len(annot_tuples[1]) == 1:
 | 
						|
                    continue
 | 
						|
                score_model(scorer, nlp, raw_text, annot_tuples,
 | 
						|
                            verbose=verbose if itn >= 2 else False)
 | 
						|
                if raw_text is None:
 | 
						|
                    words = add_noise(annot_tuples[1], corruption_level)
 | 
						|
                    tokens = nlp.tokenizer.tokens_from_list(words)
 | 
						|
                else:
 | 
						|
                    raw_text = add_noise(raw_text, corruption_level)
 | 
						|
                    tokens = nlp.tokenizer(raw_text)
 | 
						|
                nlp.tagger(tokens)
 | 
						|
                gold = GoldParse(tokens, annot_tuples, make_projective=True)
 | 
						|
                if not gold.is_projective:
 | 
						|
                    raise Exception(
 | 
						|
                        "Non-projective sentence in training, after we should "
 | 
						|
                        "have enforced projectivity: %s" % annot_tuples
 | 
						|
                    )
 | 
						|
                loss += nlp.parser.train(tokens, gold)
 | 
						|
                nlp.entity.train(tokens, gold)
 | 
						|
                nlp.tagger.train(tokens, gold.tags)
 | 
						|
        random.shuffle(gold_tuples)
 | 
						|
        print('%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f,
 | 
						|
                                                   scorer.tags_acc,
 | 
						|
                                                   scorer.token_acc))
 | 
						|
    print('end training')
 | 
						|
    nlp.end_training(model_dir)
 | 
						|
    print('done')
 | 
						|
 | 
						|
 | 
						|
def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=False,
 | 
						|
             beam_width=None, cand_preproc=None):
 | 
						|
    nlp = Language(data_dir=model_dir)
 | 
						|
    if beam_width is not None:
 | 
						|
        nlp.parser.cfg.beam_width = beam_width
 | 
						|
    scorer = Scorer()
 | 
						|
    for raw_text, sents in gold_tuples:
 | 
						|
        if gold_preproc:
 | 
						|
            raw_text = None
 | 
						|
        else:
 | 
						|
            sents = _merge_sents(sents)
 | 
						|
        for annot_tuples, brackets in sents:
 | 
						|
            if raw_text is None:
 | 
						|
                tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
 | 
						|
                nlp.tagger(tokens)
 | 
						|
                nlp.parser(tokens)
 | 
						|
                nlp.entity(tokens)
 | 
						|
            else:
 | 
						|
                tokens = nlp(raw_text)
 | 
						|
            gold = GoldParse(tokens, annot_tuples)
 | 
						|
            scorer.score(tokens, gold, verbose=verbose)
 | 
						|
    return scorer
 | 
						|
 | 
						|
 | 
						|
def write_parses(Language, dev_loc, model_dir, out_loc):
 | 
						|
    nlp = Language(data_dir=model_dir)
 | 
						|
    gold_tuples = read_json_file(dev_loc)
 | 
						|
    scorer = Scorer()
 | 
						|
    out_file = io.open(out_loc, 'w', 'utf8')
 | 
						|
    for raw_text, sents in gold_tuples:
 | 
						|
        sents = _merge_sents(sents)
 | 
						|
        for annot_tuples, brackets in sents:
 | 
						|
            if raw_text is None:
 | 
						|
                tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
 | 
						|
                nlp.tagger(tokens)
 | 
						|
                nlp.entity(tokens)
 | 
						|
                nlp.parser(tokens)
 | 
						|
            else:
 | 
						|
                tokens = nlp(raw_text)
 | 
						|
            #gold = GoldParse(tokens, annot_tuples)
 | 
						|
            #scorer.score(tokens, gold, verbose=False)
 | 
						|
            for sent in tokens.sents:
 | 
						|
                for t in sent:
 | 
						|
                    if not t.is_space:
 | 
						|
                        out_file.write(
 | 
						|
                            '%d\t%s\t%s\t%s\t%s\n' % (t.i, t.orth_, t.tag_, t.head.orth_, t.dep_)
 | 
						|
                        )
 | 
						|
                out_file.write('\n')
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    train_loc=("Location of training file or directory"),
 | 
						|
    dev_loc=("Location of development file or directory"),
 | 
						|
    model_dir=("Location of output model directory",),
 | 
						|
    eval_only=("Skip training, and only evaluate", "flag", "e", bool),
 | 
						|
    corruption_level=("Amount of noise to add to training data", "option", "c", float),
 | 
						|
    gold_preproc=("Use gold-standard sentence boundaries in training?", "flag", "g", bool),
 | 
						|
    out_loc=("Out location", "option", "o", str),
 | 
						|
    n_sents=("Number of training sentences", "option", "n", int),
 | 
						|
    n_iter=("Number of training iterations", "option", "i", int),
 | 
						|
    verbose=("Verbose error reporting", "flag", "v", bool),
 | 
						|
    debug=("Debug mode", "flag", "d", bool),
 | 
						|
)
 | 
						|
def main(train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbose=False,
 | 
						|
         debug=False, corruption_level=0.0, gold_preproc=False, eval_only=False):
 | 
						|
    if not eval_only:
 | 
						|
        gold_train = list(read_json_file(train_loc))
 | 
						|
        train(English, gold_train, model_dir,
 | 
						|
              feat_set='basic' if not debug else 'debug',
 | 
						|
              gold_preproc=gold_preproc, n_sents=n_sents,
 | 
						|
              corruption_level=corruption_level, n_iter=n_iter,
 | 
						|
              verbose=verbose)
 | 
						|
    if out_loc:
 | 
						|
        write_parses(English, dev_loc, model_dir, out_loc)
 | 
						|
    scorer = evaluate(English, list(read_json_file(dev_loc)),
 | 
						|
                      model_dir, gold_preproc=gold_preproc, verbose=verbose)
 | 
						|
    print('TOK', scorer.token_acc)
 | 
						|
    print('POS', scorer.tags_acc)
 | 
						|
    print('UAS', scorer.uas)
 | 
						|
    print('LAS', scorer.las)
 | 
						|
 | 
						|
    print('NER P', scorer.ents_p)
 | 
						|
    print('NER R', scorer.ents_r)
 | 
						|
    print('NER F', scorer.ents_f)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    plac.call(main)
 |