mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Add doc.cats to spacy.gold at the paragraph level
Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in
the spacy JSON training format at the paragraph level.
* `spacy.gold.docs_to_json()` writes `docs.cats`
* `GoldCorpus` reads in cats in each `GoldParse`
* Update instances of gold_tuples to handle cats
Update iteration over gold_tuples / gold_parses to handle addition of
cats at the paragraph level.
* Add textcat to train CLI
* Add textcat options to train CLI
* Add textcat labels in `TextCategorizer.begin_training()`
* Add textcat evaluation to `Scorer`:
  * For binary exclusive classes with provided label: F1 for label
  * For 2+ exclusive classes: F1 macro average
  * For multilabel (not exclusive): ROC AUC macro average (currently
relying on sklearn)
* Provide user info on textcat evaluation settings, potential
incompatibilities
* Provide pipeline to Scorer in `Language.evaluate` for textcat config
* Customize train CLI output to include only metrics relevant to current
pipeline
* Add textcat evaluation to evaluate CLI
* Fix handling of unset arguments and config params
Fix handling of unset arguments and model confiug parameters in Scorer
initialization.
* Temporarily add sklearn requirement
* Remove sklearn version number
* Improve Scorer handling of models without textcats
* Fixing Scorer handling of models without textcats
* Update Scorer output for python 2.7
* Modify inf in Scorer for python 2.7
* Auto-format
Also make small adjustments to make auto-formatting with black easier and produce nicer results
* Move error message to Errors
* Update documentation
* Add cats to annotation JSON format [ci skip]
* Fix tpl flag and docs [ci skip]
* Switch to internal roc_auc_score
Switch to internal `roc_auc_score()` adapted from scikit-learn.
* Add AUCROCScore tests and improve errors/warnings
* Add tests for AUCROCScore and roc_auc_score
* Add missing error for only positive/negative values
* Remove unnecessary warnings and errors
* Make reduced roc_auc_score functions private
Because most of the checks and warnings have been stripped for the
internal functions and access is only intended through `ROCAUCScore`,
make the functions for roc_auc_score adapted from scikit-learn private.
* Check that data corresponds with multilabel flag
Check that the training instances correspond with the multilabel flag,
adding the multilabel flag if required.
* Add textcat score to early stopping check
* Add more checks to debug-data for textcat
* Add example training data for textcat
* Add more checks to textcat train CLI
* Check configuration when extending base model
* Fix typos
* Update textcat example data
* Provide licensing details and licenses for data
* Remove two labels with no positive instances from jigsaw-toxic-comment
data.
Co-authored-by: Ines Montani <ines@ines.io>
		
	
			
		
			
				
	
	
		
			97 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			97 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf8
 | 
						|
from __future__ import unicode_literals, division, print_function
 | 
						|
 | 
						|
import plac
 | 
						|
from timeit import default_timer as timer
 | 
						|
from wasabi import Printer
 | 
						|
 | 
						|
from ..gold import GoldCorpus
 | 
						|
from .. import util
 | 
						|
from .. import displacy
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    model=("Model name or path", "positional", None, str),
 | 
						|
    data_path=("Location of JSON-formatted evaluation data", "positional", None, str),
 | 
						|
    gold_preproc=("Use gold preprocessing", "flag", "G", bool),
 | 
						|
    gpu_id=("Use GPU", "option", "g", int),
 | 
						|
    displacy_path=("Directory to output rendered parses as HTML", "option", "dp", str),
 | 
						|
    displacy_limit=("Limit of parses to render as HTML", "option", "dl", int),
 | 
						|
    return_scores=("Return dict containing model scores", "flag", "R", bool),
 | 
						|
)
 | 
						|
def evaluate(
 | 
						|
    model,
 | 
						|
    data_path,
 | 
						|
    gpu_id=-1,
 | 
						|
    gold_preproc=False,
 | 
						|
    displacy_path=None,
 | 
						|
    displacy_limit=25,
 | 
						|
    return_scores=False,
 | 
						|
):
 | 
						|
    """
 | 
						|
    Evaluate a model. To render a sample of parses in a HTML file, set an
 | 
						|
    output directory as the displacy_path argument.
 | 
						|
    """
 | 
						|
    msg = Printer()
 | 
						|
    util.fix_random_seed()
 | 
						|
    if gpu_id >= 0:
 | 
						|
        util.use_gpu(gpu_id)
 | 
						|
    util.set_env_log(False)
 | 
						|
    data_path = util.ensure_path(data_path)
 | 
						|
    displacy_path = util.ensure_path(displacy_path)
 | 
						|
    if not data_path.exists():
 | 
						|
        msg.fail("Evaluation data not found", data_path, exits=1)
 | 
						|
    if displacy_path and not displacy_path.exists():
 | 
						|
        msg.fail("Visualization output directory not found", displacy_path, exits=1)
 | 
						|
    corpus = GoldCorpus(data_path, data_path)
 | 
						|
    nlp = util.load_model(model)
 | 
						|
    dev_docs = list(corpus.dev_docs(nlp, gold_preproc=gold_preproc))
 | 
						|
    begin = timer()
 | 
						|
    scorer = nlp.evaluate(dev_docs, verbose=False)
 | 
						|
    end = timer()
 | 
						|
    nwords = sum(len(doc_gold[0]) for doc_gold in dev_docs)
 | 
						|
    results = {
 | 
						|
        "Time": "%.2f s" % (end - begin),
 | 
						|
        "Words": nwords,
 | 
						|
        "Words/s": "%.0f" % (nwords / (end - begin)),
 | 
						|
        "TOK": "%.2f" % scorer.token_acc,
 | 
						|
        "POS": "%.2f" % scorer.tags_acc,
 | 
						|
        "UAS": "%.2f" % scorer.uas,
 | 
						|
        "LAS": "%.2f" % scorer.las,
 | 
						|
        "NER P": "%.2f" % scorer.ents_p,
 | 
						|
        "NER R": "%.2f" % scorer.ents_r,
 | 
						|
        "NER F": "%.2f" % scorer.ents_f,
 | 
						|
        "Textcat": "%.2f" % scorer.textcat_score,
 | 
						|
    }
 | 
						|
    msg.table(results, title="Results")
 | 
						|
 | 
						|
    if displacy_path:
 | 
						|
        docs, golds = zip(*dev_docs)
 | 
						|
        render_deps = "parser" in nlp.meta.get("pipeline", [])
 | 
						|
        render_ents = "ner" in nlp.meta.get("pipeline", [])
 | 
						|
        render_parses(
 | 
						|
            docs,
 | 
						|
            displacy_path,
 | 
						|
            model_name=model,
 | 
						|
            limit=displacy_limit,
 | 
						|
            deps=render_deps,
 | 
						|
            ents=render_ents,
 | 
						|
        )
 | 
						|
        msg.good("Generated {} parses as HTML".format(displacy_limit), displacy_path)
 | 
						|
    if return_scores:
 | 
						|
        return scorer.scores
 | 
						|
 | 
						|
 | 
						|
def render_parses(docs, output_path, model_name="", limit=250, deps=True, ents=True):
 | 
						|
    docs[0].user_data["title"] = model_name
 | 
						|
    if ents:
 | 
						|
        html = displacy.render(docs[:limit], style="ent", page=True)
 | 
						|
        with (output_path / "entities.html").open("w", encoding="utf8") as file_:
 | 
						|
            file_.write(html)
 | 
						|
    if deps:
 | 
						|
        html = displacy.render(
 | 
						|
            docs[:limit], style="dep", page=True, options={"compact": True}
 | 
						|
        )
 | 
						|
        with (output_path / "parses.html").open("w", encoding="utf8") as file_:
 | 
						|
            file_.write(html)
 |