mirror of
https://github.com/explosion/spaCy.git
synced 2025-02-07 23:20:35 +03:00
52 lines
1.6 KiB
Python
52 lines
1.6 KiB
Python
import ray
|
|
from wasabi import msg
|
|
from .. import util
|
|
|
|
|
|
class OptimizerWorker:
|
|
def __init__(self, config_path):
|
|
msg.info(f"Loading config from: {config_path}")
|
|
config = util.load_config(config_path, create_objects=False)
|
|
util.fix_random_seed(config["training"]["seed"])
|
|
config = util.load_config(config_path, create_objects=True)
|
|
training = config["training"]
|
|
optimizer = training["optimizer"]
|
|
self.optimizer = optimizer
|
|
self.weights_dict = {}
|
|
|
|
def call(self, key, weights, gradient, *, lr_scale=1.0):
|
|
if key not in self.weights_dict:
|
|
self.weights_dict[key] = weights.copy()
|
|
new_weights, new_grads = self.optimizer(
|
|
key, self.weights_dict[key], gradient.copy(), lr_scale=lr_scale)
|
|
self.weights_dict[key] = new_weights
|
|
return new_weights, new_grads
|
|
|
|
def fetch(self):
|
|
return self.optimizer
|
|
|
|
def step_schedules(self):
|
|
self.optimizer.step_schedules()
|
|
|
|
class RayOptimizer:
|
|
local_optimizer = None
|
|
|
|
def __init__(self, config_path):
|
|
RemoteOptimizer = ray.remote(OptimizerWorker)
|
|
self.optimizer = RemoteOptimizer.remote(config_path)
|
|
self.sync()
|
|
|
|
def sync(self):
|
|
self.local_optimizer = ray.get(self.optimizer.fetch.remote())
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
weights, grads = ray.get(self.optimizer.call.remote(*args, **kwargs))
|
|
return weights.copy(), grads.copy()
|
|
|
|
def __getattr__(self, name):
|
|
return getattr(self.local_optimizer, name)
|
|
|
|
def step_schedules(self):
|
|
self.optimizer.step_schedules.remote()
|
|
self.sync()
|