mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* change logging call for spacy.LookupsDataLoader.v1 * substitutions in language and _util * various more substitutions * add string formatting guidelines to contribution guidelines
		
			
				
	
	
		
			331 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			331 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import warnings
 | 
						|
from typing import Union, List, Iterable, Iterator, TYPE_CHECKING, Callable
 | 
						|
from typing import Optional
 | 
						|
from pathlib import Path
 | 
						|
import random
 | 
						|
import srsly
 | 
						|
 | 
						|
from .. import util
 | 
						|
from .augment import dont_augment
 | 
						|
from .example import Example
 | 
						|
from ..errors import Warnings, Errors
 | 
						|
from ..tokens import DocBin, Doc
 | 
						|
from ..vocab import Vocab
 | 
						|
 | 
						|
if TYPE_CHECKING:
 | 
						|
    # This lets us add type hints for mypy etc. without causing circular imports
 | 
						|
    from ..language import Language  # noqa: F401
 | 
						|
 | 
						|
FILE_TYPE = ".spacy"
 | 
						|
 | 
						|
 | 
						|
@util.registry.readers("spacy.Corpus.v1")
 | 
						|
def create_docbin_reader(
 | 
						|
    path: Optional[Path],
 | 
						|
    gold_preproc: bool,
 | 
						|
    max_length: int = 0,
 | 
						|
    limit: int = 0,
 | 
						|
    augmenter: Optional[Callable] = None,
 | 
						|
) -> Callable[["Language"], Iterable[Example]]:
 | 
						|
    if path is None:
 | 
						|
        raise ValueError(Errors.E913)
 | 
						|
    util.logger.debug("Loading corpus from path: %s", path)
 | 
						|
    return Corpus(
 | 
						|
        path,
 | 
						|
        gold_preproc=gold_preproc,
 | 
						|
        max_length=max_length,
 | 
						|
        limit=limit,
 | 
						|
        augmenter=augmenter,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@util.registry.readers("spacy.JsonlCorpus.v1")
 | 
						|
def create_jsonl_reader(
 | 
						|
    path: Optional[Union[str, Path]],
 | 
						|
    min_length: int = 0,
 | 
						|
    max_length: int = 0,
 | 
						|
    limit: int = 0,
 | 
						|
) -> Callable[["Language"], Iterable[Example]]:
 | 
						|
    return JsonlCorpus(path, min_length=min_length, max_length=max_length, limit=limit)
 | 
						|
 | 
						|
 | 
						|
@util.registry.readers("spacy.read_labels.v1")
 | 
						|
def read_labels(path: Path, *, require: bool = False):
 | 
						|
    # I decided not to give this a generic name, because I don't want people to
 | 
						|
    # use it for arbitrary stuff, as I want this require arg with default False.
 | 
						|
    if not require and not path.exists():
 | 
						|
        return None
 | 
						|
    return srsly.read_json(path)
 | 
						|
 | 
						|
 | 
						|
@util.registry.readers("spacy.PlainTextCorpus.v1")
 | 
						|
def create_plain_text_reader(
 | 
						|
    path: Optional[Path],
 | 
						|
    min_length: int = 0,
 | 
						|
    max_length: int = 0,
 | 
						|
) -> Callable[["Language"], Iterable[Doc]]:
 | 
						|
    """Iterate Example objects from a file or directory of plain text
 | 
						|
    UTF-8 files with one line per doc.
 | 
						|
 | 
						|
    path (Path): The directory or filename to read from.
 | 
						|
    min_length (int): Minimum document length (in tokens). Shorter documents
 | 
						|
        will be skipped. Defaults to 0, which indicates no limit.
 | 
						|
    max_length (int): Maximum document length (in tokens). Longer documents will
 | 
						|
        be skipped. Defaults to 0, which indicates no limit.
 | 
						|
 | 
						|
    DOCS: https://spacy.io/api/corpus#plaintextcorpus
 | 
						|
    """
 | 
						|
    if path is None:
 | 
						|
        raise ValueError(Errors.E913)
 | 
						|
    return PlainTextCorpus(path, min_length=min_length, max_length=max_length)
 | 
						|
 | 
						|
 | 
						|
def walk_corpus(path: Union[str, Path], file_type) -> List[Path]:
 | 
						|
    path = util.ensure_path(path)
 | 
						|
    if not path.is_dir() and path.parts[-1].endswith(file_type):
 | 
						|
        return [path]
 | 
						|
    orig_path = path
 | 
						|
    paths = [path]
 | 
						|
    locs = []
 | 
						|
    seen = set()
 | 
						|
    for path in paths:
 | 
						|
        if str(path) in seen:
 | 
						|
            continue
 | 
						|
        seen.add(str(path))
 | 
						|
        if path.parts and path.parts[-1].startswith("."):
 | 
						|
            continue
 | 
						|
        elif path.is_dir():
 | 
						|
            paths.extend(path.iterdir())
 | 
						|
        elif path.parts[-1].endswith(file_type):
 | 
						|
            locs.append(path)
 | 
						|
    if len(locs) == 0:
 | 
						|
        warnings.warn(Warnings.W090.format(path=orig_path, format=file_type))
 | 
						|
    # It's good to sort these, in case the ordering messes up a cache.
 | 
						|
    locs.sort()
 | 
						|
    return locs
 | 
						|
 | 
						|
 | 
						|
class Corpus:
 | 
						|
    """Iterate Example objects from a file or directory of DocBin (.spacy)
 | 
						|
    formatted data files.
 | 
						|
 | 
						|
    path (Path): The directory or filename to read from.
 | 
						|
    gold_preproc (bool): Whether to set up the Example object with gold-standard
 | 
						|
        sentences and tokens for the predictions. Gold preprocessing helps
 | 
						|
        the annotations align to the tokenization, and may result in sequences
 | 
						|
        of more consistent length. However, it may reduce run-time accuracy due
 | 
						|
        to train/test skew. Defaults to False.
 | 
						|
    max_length (int): Maximum document length. Longer documents will be
 | 
						|
        split into sentences, if sentence boundaries are available. Defaults to
 | 
						|
        0, which indicates no limit.
 | 
						|
    limit (int): Limit corpus to a subset of examples, e.g. for debugging.
 | 
						|
        Defaults to 0, which indicates no limit.
 | 
						|
    augment (Callable[Example, Iterable[Example]]): Optional data augmentation
 | 
						|
        function, to extrapolate additional examples from your annotations.
 | 
						|
    shuffle (bool): Whether to shuffle the examples.
 | 
						|
 | 
						|
    DOCS: https://spacy.io/api/corpus
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        path: Union[str, Path],
 | 
						|
        *,
 | 
						|
        limit: int = 0,
 | 
						|
        gold_preproc: bool = False,
 | 
						|
        max_length: int = 0,
 | 
						|
        augmenter: Optional[Callable] = None,
 | 
						|
        shuffle: bool = False,
 | 
						|
    ) -> None:
 | 
						|
        self.path = util.ensure_path(path)
 | 
						|
        self.gold_preproc = gold_preproc
 | 
						|
        self.max_length = max_length
 | 
						|
        self.limit = limit
 | 
						|
        self.augmenter = augmenter if augmenter is not None else dont_augment
 | 
						|
        self.shuffle = shuffle
 | 
						|
 | 
						|
    def __call__(self, nlp: "Language") -> Iterator[Example]:
 | 
						|
        """Yield examples from the data.
 | 
						|
 | 
						|
        nlp (Language): The current nlp object.
 | 
						|
        YIELDS (Example): The examples.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/corpus#call
 | 
						|
        """
 | 
						|
        ref_docs = self.read_docbin(nlp.vocab, walk_corpus(self.path, FILE_TYPE))
 | 
						|
        if self.shuffle:
 | 
						|
            ref_docs = list(ref_docs)  # type: ignore
 | 
						|
            random.shuffle(ref_docs)  # type: ignore
 | 
						|
 | 
						|
        if self.gold_preproc:
 | 
						|
            examples = self.make_examples_gold_preproc(nlp, ref_docs)
 | 
						|
        else:
 | 
						|
            examples = self.make_examples(nlp, ref_docs)
 | 
						|
        for real_eg in examples:
 | 
						|
            for augmented_eg in self.augmenter(nlp, real_eg):  # type: ignore[operator]
 | 
						|
                yield augmented_eg
 | 
						|
 | 
						|
    def _make_example(
 | 
						|
        self, nlp: "Language", reference: Doc, gold_preproc: bool
 | 
						|
    ) -> Example:
 | 
						|
        if gold_preproc or reference.has_unknown_spaces:
 | 
						|
            return Example(
 | 
						|
                Doc(
 | 
						|
                    nlp.vocab,
 | 
						|
                    words=[word.text for word in reference],
 | 
						|
                    spaces=[bool(word.whitespace_) for word in reference],
 | 
						|
                ),
 | 
						|
                reference,
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            return Example(nlp.make_doc(reference.text), reference)
 | 
						|
 | 
						|
    def make_examples(
 | 
						|
        self, nlp: "Language", reference_docs: Iterable[Doc]
 | 
						|
    ) -> Iterator[Example]:
 | 
						|
        for reference in reference_docs:
 | 
						|
            if len(reference) == 0:
 | 
						|
                continue
 | 
						|
            elif self.max_length == 0 or len(reference) < self.max_length:
 | 
						|
                yield self._make_example(nlp, reference, False)
 | 
						|
            elif reference.has_annotation("SENT_START"):
 | 
						|
                for ref_sent in reference.sents:
 | 
						|
                    if len(ref_sent) == 0:
 | 
						|
                        continue
 | 
						|
                    elif self.max_length == 0 or len(ref_sent) < self.max_length:
 | 
						|
                        yield self._make_example(nlp, ref_sent.as_doc(), False)
 | 
						|
 | 
						|
    def make_examples_gold_preproc(
 | 
						|
        self, nlp: "Language", reference_docs: Iterable[Doc]
 | 
						|
    ) -> Iterator[Example]:
 | 
						|
        for reference in reference_docs:
 | 
						|
            if reference.has_annotation("SENT_START"):
 | 
						|
                ref_sents = [sent.as_doc() for sent in reference.sents]
 | 
						|
            else:
 | 
						|
                ref_sents = [reference]
 | 
						|
            for ref_sent in ref_sents:
 | 
						|
                eg = self._make_example(nlp, ref_sent, True)
 | 
						|
                if len(eg.x):
 | 
						|
                    yield eg
 | 
						|
 | 
						|
    def read_docbin(
 | 
						|
        self, vocab: Vocab, locs: Iterable[Union[str, Path]]
 | 
						|
    ) -> Iterator[Doc]:
 | 
						|
        """Yield training examples as example dicts"""
 | 
						|
        i = 0
 | 
						|
        for loc in locs:
 | 
						|
            loc = util.ensure_path(loc)
 | 
						|
            if loc.parts[-1].endswith(FILE_TYPE):  # type: ignore[union-attr]
 | 
						|
                doc_bin = DocBin().from_disk(loc)
 | 
						|
                docs = doc_bin.get_docs(vocab)
 | 
						|
                for doc in docs:
 | 
						|
                    if len(doc):
 | 
						|
                        yield doc
 | 
						|
                        i += 1
 | 
						|
                        if self.limit >= 1 and i >= self.limit:
 | 
						|
                            break
 | 
						|
 | 
						|
 | 
						|
class JsonlCorpus:
 | 
						|
    """Iterate Example objects from a file or directory of jsonl
 | 
						|
    formatted raw text files.
 | 
						|
 | 
						|
    path (Path): The directory or filename to read from.
 | 
						|
    min_length (int): Minimum document length (in tokens). Shorter documents
 | 
						|
        will be skipped. Defaults to 0, which indicates no limit.
 | 
						|
 | 
						|
    max_length (int): Maximum document length (in tokens). Longer documents will
 | 
						|
        be skipped. Defaults to 0, which indicates no limit.
 | 
						|
    limit (int): Limit corpus to a subset of examples, e.g. for debugging.
 | 
						|
        Defaults to 0, which indicates no limit.
 | 
						|
 | 
						|
    DOCS: https://spacy.io/api/corpus#jsonlcorpus
 | 
						|
    """
 | 
						|
 | 
						|
    file_type = "jsonl"
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        path: Optional[Union[str, Path]],
 | 
						|
        *,
 | 
						|
        limit: int = 0,
 | 
						|
        min_length: int = 0,
 | 
						|
        max_length: int = 0,
 | 
						|
    ) -> None:
 | 
						|
        self.path = util.ensure_path(path)
 | 
						|
        self.min_length = min_length
 | 
						|
        self.max_length = max_length
 | 
						|
        self.limit = limit
 | 
						|
 | 
						|
    def __call__(self, nlp: "Language") -> Iterator[Example]:
 | 
						|
        """Yield examples from the data.
 | 
						|
 | 
						|
        nlp (Language): The current nlp object.
 | 
						|
        YIELDS (Example): The example objects.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/corpus#jsonlcorpus-call
 | 
						|
        """
 | 
						|
        for loc in walk_corpus(self.path, ".jsonl"):
 | 
						|
            records = srsly.read_jsonl(loc)
 | 
						|
            for record in records:
 | 
						|
                doc = nlp.make_doc(record["text"])
 | 
						|
                if self.min_length >= 1 and len(doc) < self.min_length:
 | 
						|
                    continue
 | 
						|
                elif self.max_length >= 1 and len(doc) >= self.max_length:
 | 
						|
                    continue
 | 
						|
                else:
 | 
						|
                    words = [w.text for w in doc]
 | 
						|
                    spaces = [bool(w.whitespace_) for w in doc]
 | 
						|
                    # We don't *need* an example here, but it seems nice to
 | 
						|
                    # make it match the Corpus signature.
 | 
						|
                    yield Example(doc, Doc(nlp.vocab, words=words, spaces=spaces))
 | 
						|
 | 
						|
 | 
						|
class PlainTextCorpus:
 | 
						|
    """Iterate Example objects from a file or directory of plain text
 | 
						|
    UTF-8 files with one line per doc.
 | 
						|
 | 
						|
    path (Path): The directory or filename to read from.
 | 
						|
    min_length (int): Minimum document length (in tokens). Shorter documents
 | 
						|
        will be skipped. Defaults to 0, which indicates no limit.
 | 
						|
    max_length (int): Maximum document length (in tokens). Longer documents will
 | 
						|
        be skipped. Defaults to 0, which indicates no limit.
 | 
						|
 | 
						|
    DOCS: https://spacy.io/api/corpus#plaintextcorpus
 | 
						|
    """
 | 
						|
 | 
						|
    file_type = "txt"
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        path: Optional[Union[str, Path]],
 | 
						|
        *,
 | 
						|
        min_length: int = 0,
 | 
						|
        max_length: int = 0,
 | 
						|
    ) -> None:
 | 
						|
        self.path = util.ensure_path(path)
 | 
						|
        self.min_length = min_length
 | 
						|
        self.max_length = max_length
 | 
						|
 | 
						|
    def __call__(self, nlp: "Language") -> Iterator[Example]:
 | 
						|
        """Yield examples from the data.
 | 
						|
 | 
						|
        nlp (Language): The current nlp object.
 | 
						|
        YIELDS (Example): The example objects.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/corpus#plaintextcorpus-call
 | 
						|
        """
 | 
						|
        for loc in walk_corpus(self.path, ".txt"):
 | 
						|
            with open(loc, encoding="utf-8") as f:
 | 
						|
                for text in f:
 | 
						|
                    text = text.rstrip("\r\n")
 | 
						|
                    if len(text):
 | 
						|
                        doc = nlp.make_doc(text)
 | 
						|
                        if self.min_length >= 1 and len(doc) < self.min_length:
 | 
						|
                            continue
 | 
						|
                        elif self.max_length >= 1 and len(doc) > self.max_length:
 | 
						|
                            continue
 | 
						|
                        # We don't *need* an example here, but it seems nice to
 | 
						|
                        # make it match the Corpus signature.
 | 
						|
                        yield Example(doc, doc.copy())
 |