mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-04 06:16:33 +03:00
554df9ef20
* Rename all MDX file to `.mdx`
* Lock current node version (#11885)
* Apply Prettier (#11996)
* Minor website fixes (#11974) [ci skip]
* fix table
* Migrate to Next WEB-17 (#12005)
* Initial commit
* Run `npx create-next-app@13 next-blog`
* Install MDX packages
Following: 77b5f79a4d/packages/next-mdx/readme.md
* Add MDX to Next
* Allow Next to handle `.md` and `.mdx` files.
* Add VSCode extension recommendation
* Disabled TypeScript strict mode for now
* Add prettier
* Apply Prettier to all files
* Make sure to use correct Node version
* Add basic implementation for `MDXRemote`
* Add experimental Rust MDX parser
* Add `/public`
* Add SASS support
* Remove default pages and styling
* Convert to module
This allows to use `import/export` syntax
* Add import for custom components
* Add ability to load plugins
* Extract function
This will make the next commit easier to read
* Allow to handle directories for page creation
* Refactoring
* Allow to parse subfolders for pages
* Extract logic
* Redirect `index.mdx` to parent directory
* Disabled ESLint during builds
* Disabled typescript during build
* Remove Gatsby from `README.md`
* Rephrase Docker part of `README.md`
* Update project structure in `README.md`
* Move and rename plugins
* Update plugin for wrapping sections
* Add dependencies for plugin
* Use plugin
* Rename wrapper type
* Simplify unnessary adding of id to sections
The slugified section ids are useless, because they can not be referenced anywhere anyway. The navigation only works if the section has the same id as the heading.
* Add plugin for custom attributes on Markdown elements
* Add plugin to readd support for tables
* Add plugin to fix problem with wrapped images
For more details see this issue: https://github.com/mdx-js/mdx/issues/1798
* Add necessary meta data to pages
* Install necessary dependencies
* Remove outdated MDX handling
* Remove reliance on `InlineList`
* Use existing Remark components
* Remove unallowed heading
Before `h1` components where not overwritten and would never have worked and they aren't used anywhere either.
* Add missing components to MDX
* Add correct styling
* Fix broken list
* Fix broken CSS classes
* Implement layout
* Fix links
* Fix broken images
* Fix pattern image
* Fix heading attributes
* Rename heading attribute
`new` was causing some weird issue, so renaming it to `version`
* Update comment syntax in MDX
* Merge imports
* Fix markdown rendering inside components
* Add model pages
* Simplify anchors
* Fix default value for theme
* Add Universe index page
* Add Universe categories
* Add Universe projects
* Fix Next problem with copy
Next complains when the server renders something different then the client, therfor we move the differing logic to `useEffect`
* Fix improper component nesting
Next doesn't allow block elements inside a `<p>`
* Replace landing page MDX with page component
* Remove inlined iframe content
* Remove ability to inline HTML content in iFrames
* Remove MDX imports
* Fix problem with image inside link in MDX
* Escape character for MDX
* Fix unescaped characters in MDX
* Fix headings with logo
* Allow to export static HTML pages
* Add prebuild script
This command is automatically run by Next
* Replace `svg-loader` with `react-inlinesvg`
`svg-loader` is no longer maintained
* Fix ESLint `react-hooks/exhaustive-deps`
* Fix dropdowns
* Change code language from `cli` to `bash`
* Remove unnessary language `none`
* Fix invalid code language
`markdown_` with an underscore was used to basically turn of syntax highlighting, but using unknown languages know throws an error.
* Enable code blocks plugin
* Readd `InlineCode` component
MDX2 removed the `inlineCode` component
> The special component name `inlineCode` was removed, we recommend to use `pre` for the block version of code, and code for both the block and inline versions
Source: https://mdxjs.com/migrating/v2/#update-mdx-content
* Remove unused code
* Extract function to own file
* Fix code syntax highlighting
* Update syntax for code block meta data
* Remove unused prop
* Fix internal link recognition
There is a problem with regex between Node and browser, and since Next runs the component on both, this create an error.
`Prop `rel` did not match. Server: "null" Client: "noopener nofollow noreferrer"`
This simplifies the implementation and fixes the above error.
* Replace `react-helmet` with `next/head`
* Fix `className` problem for JSX component
* Fix broken bold markdown
* Convert file to `.mjs` to be used by Node process
* Add plugin to replace strings
* Fix custom table row styling
* Fix problem with `span` inside inline `code`
React doesn't allow a `span` inside an inline `code` element and throws an error in dev mode.
* Add `_document` to be able to customize `<html>` and `<body>`
* Add `lang="en"`
* Store Netlify settings in file
This way we don't need to update via Netlify UI, which can be tricky if changing build settings.
* Add sitemap
* Add Smartypants
* Add PWA support
* Add `manifest.webmanifest`
* Fix bug with anchor links after reloading
There was no need for the previous implementation, since the browser handles this nativly. Additional the manual scrolling into view was actually broken, because the heading would disappear behind the menu bar.
* Rename custom event
I was googeling for ages to find out what kind of event `inview` is, only to figure out it was a custom event with a name that sounds pretty much like a native one. 🫠
* Fix missing comment syntax highlighting
* Refactor Quickstart component
The previous implementation was hidding the irrelevant lines via data-props and dynamically generated CSS. This created problems with Next and was also hard to follow. CSS was used to do what React is supposed to handle.
The new implementation simplfy filters the list of children (React elements) via their props.
* Fix syntax highlighting for Training Quickstart
* Unify code rendering
* Improve error logging in Juniper
* Fix Juniper component
* Automatically generate "Read Next" link
* Add Plausible
* Use recent DocSearch component and adjust styling
* Fix images
* Turn of image optimization
> Image Optimization using Next.js' default loader is not compatible with `next export`.
We currently deploy to Netlify via `next export`
* Dont build pages starting with `_`
* Remove unused files
* Add Next plugin to Netlify
* Fix button layout
MDX automatically adds `p` tags around text on a new line and Prettier wants to put the text on a new line. Hacking with JSX string.
* Add 404 page
* Apply Prettier
* Update Prettier for `package.json`
Next sometimes wants to patch `package-lock.json`. The old Prettier setting indended with 4 spaces, but Next always indends with 2 spaces. Since `npm install` automatically uses the indendation from `package.json` for `package-lock.json` and to avoid the format switching back and forth, both files are now set to 2 spaces.
* Apply Next patch to `package-lock.json`
When starting the dev server Next would warn `warn - Found lockfile missing swc dependencies, patching...` and update the `package-lock.json`. These are the patched changes.
* fix link
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* small backslash fixes
* adjust to new style
Co-authored-by: Marcus Blättermann <marcus@essenmitsosse.de>
262 lines
10 KiB
Plaintext
262 lines
10 KiB
Plaintext
---
|
|
title: Trained Models & Pipelines
|
|
teaser: Downloadable trained pipelines and weights for spaCy
|
|
menu:
|
|
- ['Quickstart', 'quickstart']
|
|
- ['Conventions', 'conventions']
|
|
- ['Pipeline Design', 'design']
|
|
---
|
|
|
|
{/* TODO: include interactive demo */}
|
|
|
|
### Quickstart {hidden="true"}
|
|
|
|
> #### 📖 Installation and usage
|
|
>
|
|
> For more details on how to use trained pipelines with spaCy, see the
|
|
> [usage guide](/usage/models).
|
|
|
|
<QuickstartModels id="quickstart" />
|
|
|
|
## Package naming conventions {id="conventions"}
|
|
|
|
In general, spaCy expects all pipeline packages to follow the naming convention
|
|
of `[lang]\_[name]`. For spaCy's pipelines, we also chose to divide the name
|
|
into three components:
|
|
|
|
1. **Type:** Capabilities (e.g. `core` for general-purpose pipeline with
|
|
tagging, parsing, lemmatization and named entity recognition, or `dep` for
|
|
only tagging, parsing and lemmatization).
|
|
2. **Genre:** Type of text the pipeline is trained on, e.g. `web` or `news`.
|
|
3. **Size:** Package size indicator, `sm`, `md`, `lg` or `trf`.
|
|
|
|
`sm` and `trf` pipelines have no static word vectors.
|
|
|
|
For pipelines with default vectors, `md` has a reduced word vector table with
|
|
20k unique vectors for ~500k words and `lg` has a large word vector table
|
|
with ~500k entries.
|
|
|
|
For pipelines with floret vectors, `md` vector tables have 50k entries and
|
|
`lg` vector tables have 200k entries.
|
|
|
|
For example, [`en_core_web_sm`](/models/en#en_core_web_sm) is a small English
|
|
pipeline trained on written web text (blogs, news, comments), that includes
|
|
vocabulary, syntax and entities.
|
|
|
|
### Package versioning {id="model-versioning"}
|
|
|
|
Additionally, the pipeline package versioning reflects both the compatibility
|
|
with spaCy, as well as the model version. A package version `a.b.c` translates
|
|
to:
|
|
|
|
- `a`: **spaCy major version**. For example, `2` for spaCy v2.x.
|
|
- `b`: **spaCy minor version**. For example, `3` for spaCy v2.3.x.
|
|
- `c`: **Model version**. Different model config: e.g. from being trained on
|
|
different data, with different parameters, for different numbers of
|
|
iterations, with different vectors, etc.
|
|
|
|
For a detailed compatibility overview, see the
|
|
[`compatibility.json`](https://github.com/explosion/spacy-models/tree/master/compatibility.json).
|
|
This is also the source of spaCy's internal compatibility check, performed when
|
|
you run the [`download`](/api/cli#download) command.
|
|
|
|
## Trained pipeline design {id="design"}
|
|
|
|
The spaCy v3 trained pipelines are designed to be efficient and configurable.
|
|
For example, multiple components can share a common "token-to-vector" model and
|
|
it's easy to swap out or disable the lemmatizer. The pipelines are designed to
|
|
be efficient in terms of speed and size and work well when the pipeline is run
|
|
in full.
|
|
|
|
When modifying a trained pipeline, it's important to understand how the
|
|
components **depend on** each other. Unlike spaCy v2, where the `tagger`,
|
|
`parser` and `ner` components were all independent, some v3 components depend on
|
|
earlier components in the pipeline. As a result, disabling or reordering
|
|
components can affect the annotation quality or lead to warnings and errors.
|
|
|
|
Main changes from spaCy v2 models:
|
|
|
|
- The [`Tok2Vec`](/api/tok2vec) component may be a separate, shared component. A
|
|
component like a tagger or parser can
|
|
[listen](/api/architectures#Tok2VecListener) to an earlier `tok2vec` or
|
|
`transformer` rather than having its own separate tok2vec layer.
|
|
- Rule-based exceptions move from individual components to the
|
|
`attribute_ruler`. Lemma and POS exceptions move from the tokenizer exceptions
|
|
to the attribute ruler and the tag map and morph rules move from the tagger to
|
|
the attribute ruler.
|
|
- The lemmatizer tables and processing move from the vocab and tagger to a
|
|
separate `lemmatizer` component.
|
|
|
|
### CNN/CPU pipeline design {id="design-cnn"}
|
|
|
|
![Components and their dependencies in the CNN pipelines](/images/pipeline-design.svg)
|
|
|
|
In the `sm`/`md`/`lg` models:
|
|
|
|
- The `tagger`, `morphologizer` and `parser` components listen to the `tok2vec`
|
|
component. If the lemmatizer is trainable (v3.3+), `lemmatizer` also listens
|
|
to `tok2vec`.
|
|
- The `attribute_ruler` maps `token.tag` to `token.pos` if there is no
|
|
`morphologizer`. The `attribute_ruler` additionally makes sure whitespace is
|
|
tagged consistently and copies `token.pos` to `token.tag` if there is no
|
|
tagger. For English, the attribute ruler can improve its mapping from
|
|
`token.tag` to `token.pos` if dependency parses from a `parser` are present,
|
|
but the parser is not required.
|
|
- The `lemmatizer` component for many languages requires `token.pos` annotation
|
|
from either `tagger`+`attribute_ruler` or `morphologizer`.
|
|
- The `ner` component is independent with its own internal tok2vec layer.
|
|
|
|
#### CNN/CPU pipelines with floret vectors
|
|
|
|
The Finnish, Korean and Swedish `md` and `lg` pipelines use
|
|
[floret vectors](/usage/v3-2#vectors) instead of default vectors. If you're
|
|
running a trained pipeline on texts and working with [`Doc`](/api/doc) objects,
|
|
you shouldn't notice any difference with floret vectors. With floret vectors no
|
|
tokens are out-of-vocabulary, so [`Token.is_oov`](/api/token#attributes) will
|
|
return `False` for all tokens.
|
|
|
|
If you access vectors directly for similarity comparisons, there are a few
|
|
differences because floret vectors don't include a fixed word list like the
|
|
vector keys for default vectors.
|
|
|
|
- If your workflow iterates over the vector keys, you need to use an external
|
|
word list instead:
|
|
|
|
```diff
|
|
- lexemes = [nlp.vocab[orth] for orth in nlp.vocab.vectors]
|
|
+ lexemes = [nlp.vocab[word] for word in external_word_list]
|
|
```
|
|
|
|
- [`Vectors.most_similar`](/api/vectors#most_similar) is not supported because
|
|
there's no fixed list of vectors to compare your vectors to.
|
|
|
|
### Transformer pipeline design {id="design-trf"}
|
|
|
|
In the transformer (`trf`) models, the `tagger`, `parser` and `ner` (if present)
|
|
all listen to the `transformer` component. The `attribute_ruler` and
|
|
`lemmatizer` have the same configuration as in the CNN models.
|
|
|
|
### Modifying the default pipeline {id="design-modify"}
|
|
|
|
For faster processing, you may only want to run a subset of the components in a
|
|
trained pipeline. The `disable` and `exclude` arguments to
|
|
[`spacy.load`](/api/top-level#spacy.load) let you control which components are
|
|
loaded and run. Disabled components are loaded in the background so it's
|
|
possible to reenable them in the same pipeline in the future with
|
|
[`nlp.enable_pipe`](/api/language/#enable_pipe). To skip loading a component
|
|
completely, use `exclude` instead of `disable`.
|
|
|
|
#### Disable part-of-speech tagging and lemmatization
|
|
|
|
To disable part-of-speech tagging and lemmatization, disable the `tagger`,
|
|
`morphologizer`, `attribute_ruler` and `lemmatizer` components.
|
|
|
|
```python
|
|
# Note: English doesn't include a morphologizer
|
|
nlp = spacy.load("en_core_web_sm", disable=["tagger", "attribute_ruler", "lemmatizer"])
|
|
nlp = spacy.load("en_core_web_trf", disable=["tagger", "attribute_ruler", "lemmatizer"])
|
|
```
|
|
|
|
<Infobox variant="warning" title="Rule-based and POS-lookup lemmatizers require
|
|
Token.pos">
|
|
|
|
The lemmatizer depends on `tagger`+`attribute_ruler` or `morphologizer` for a
|
|
number of languages. If you disable any of these components, you'll see
|
|
lemmatizer warnings unless the lemmatizer is also disabled.
|
|
|
|
**v3.3**: Catalan, English, French, Russian and Spanish
|
|
|
|
**v3.0-v3.2**: Catalan, Dutch, English, French, Greek, Italian, Macedonian,
|
|
Norwegian, Polish, Russian and Spanish
|
|
|
|
</Infobox>
|
|
|
|
#### Use senter rather than parser for fast sentence segmentation
|
|
|
|
If you need fast sentence segmentation without dependency parses, disable the
|
|
`parser` use the `senter` component instead:
|
|
|
|
```python
|
|
nlp = spacy.load("en_core_web_sm")
|
|
nlp.disable_pipe("parser")
|
|
nlp.enable_pipe("senter")
|
|
```
|
|
|
|
The `senter` component is ~10× faster than the parser and more accurate
|
|
than the rule-based `sentencizer`.
|
|
|
|
#### Switch from trainable lemmatizer to default lemmatizer
|
|
|
|
Since v3.3, a number of pipelines use a trainable lemmatizer. You can check
|
|
whether the lemmatizer is trainable:
|
|
|
|
```python
|
|
nlp = spacy.load("de_core_web_sm")
|
|
assert nlp.get_pipe("lemmatizer").is_trainable
|
|
```
|
|
|
|
If you'd like to switch to a non-trainable lemmatizer that's similar to v3.2 or
|
|
earlier, you can replace the trainable lemmatizer with the default non-trainable
|
|
lemmatizer:
|
|
|
|
```python
|
|
# Requirements: pip install spacy-lookups-data
|
|
nlp = spacy.load("de_core_web_sm")
|
|
# Remove existing lemmatizer
|
|
nlp.remove_pipe("lemmatizer")
|
|
# Add non-trainable lemmatizer from language defaults
|
|
# and load lemmatizer tables from spacy-lookups-data
|
|
nlp.add_pipe("lemmatizer").initialize()
|
|
```
|
|
|
|
#### Switch from rule-based to lookup lemmatization
|
|
|
|
For the Dutch, English, French, Greek, Macedonian, Norwegian and Spanish
|
|
pipelines, you can swap out a trainable or rule-based lemmatizer for a lookup
|
|
lemmatizer:
|
|
|
|
```python
|
|
# Requirements: pip install spacy-lookups-data
|
|
nlp = spacy.load("en_core_web_sm")
|
|
nlp.remove_pipe("lemmatizer")
|
|
nlp.add_pipe("lemmatizer", config={"mode": "lookup"}).initialize()
|
|
```
|
|
|
|
#### Disable everything except NER
|
|
|
|
For the non-transformer models, the `ner` component is independent, so you can
|
|
disable everything else:
|
|
|
|
```python
|
|
nlp = spacy.load("en_core_web_sm", disable=["tok2vec", "tagger", "parser", "attribute_ruler", "lemmatizer"])
|
|
```
|
|
|
|
In the transformer models, `ner` listens to the `transformer` component, so you
|
|
can disable all components related tagging, parsing, and lemmatization.
|
|
|
|
```python
|
|
nlp = spacy.load("en_core_web_trf", disable=["tagger", "parser", "attribute_ruler", "lemmatizer"])
|
|
```
|
|
|
|
#### Move NER to the end of the pipeline
|
|
|
|
<Infobox title="For v3.0.x models only" variant="warning">
|
|
|
|
As of v3.1, the NER component is at the end of the pipeline by default.
|
|
|
|
</Infobox>
|
|
|
|
For access to `POS` and `LEMMA` features in an `entity_ruler`, move `ner` to the
|
|
end of the pipeline after `attribute_ruler` and `lemmatizer`:
|
|
|
|
```python
|
|
# load without NER
|
|
nlp = spacy.load("en_core_web_sm", exclude=["ner"])
|
|
|
|
# source NER from the same pipeline package as the last component
|
|
nlp.add_pipe("ner", source=spacy.load("en_core_web_sm"))
|
|
|
|
# insert the entity ruler
|
|
nlp.add_pipe("entity_ruler", before="ner")
|
|
```
|