mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			65 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			65 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
import pytest
 | 
						|
import random
 | 
						|
import numpy.random
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.pipeline import TextCategorizer
 | 
						|
from spacy.tokens import Doc
 | 
						|
from spacy.gold import GoldParse
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.skip(reason="Test is flakey when run with others")
 | 
						|
def test_simple_train():
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe(nlp.create_pipe("textcat"))
 | 
						|
    nlp.get_pipe("textcat").add_label("answer")
 | 
						|
    nlp.begin_training()
 | 
						|
    for i in range(5):
 | 
						|
        for text, answer in [
 | 
						|
            ("aaaa", 1.0),
 | 
						|
            ("bbbb", 0),
 | 
						|
            ("aa", 1.0),
 | 
						|
            ("bbbbbbbbb", 0.0),
 | 
						|
            ("aaaaaa", 1),
 | 
						|
        ]:
 | 
						|
            nlp.update([text], [{"cats": {"answer": answer}}])
 | 
						|
    doc = nlp("aaa")
 | 
						|
    assert "answer" in doc.cats
 | 
						|
    assert doc.cats["answer"] >= 0.5
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.skip(reason="Test is flakey when run with others")
 | 
						|
def test_textcat_learns_multilabel():
 | 
						|
    random.seed(5)
 | 
						|
    numpy.random.seed(5)
 | 
						|
    docs = []
 | 
						|
    nlp = Language()
 | 
						|
    letters = ["a", "b", "c"]
 | 
						|
    for w1 in letters:
 | 
						|
        for w2 in letters:
 | 
						|
            cats = {letter: float(w2 == letter) for letter in letters}
 | 
						|
            docs.append((Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3), cats))
 | 
						|
    random.shuffle(docs)
 | 
						|
    model = TextCategorizer(nlp.vocab, width=8)
 | 
						|
    for letter in letters:
 | 
						|
        model.add_label(letter)
 | 
						|
    optimizer = model.begin_training()
 | 
						|
    for i in range(30):
 | 
						|
        losses = {}
 | 
						|
        Ys = [GoldParse(doc, cats=cats) for doc, cats in docs]
 | 
						|
        Xs = [doc for doc, cats in docs]
 | 
						|
        model.update(Xs, Ys, sgd=optimizer, losses=losses)
 | 
						|
        random.shuffle(docs)
 | 
						|
    for w1 in letters:
 | 
						|
        for w2 in letters:
 | 
						|
            doc = Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3)
 | 
						|
            truth = {letter: w2 == letter for letter in letters}
 | 
						|
            model(doc)
 | 
						|
            for cat, score in doc.cats.items():
 | 
						|
                if not truth[cat]:
 | 
						|
                    assert score < 0.5
 | 
						|
                else:
 | 
						|
                    assert score > 0.5
 |