mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			109 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			109 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
 | 
						|
from .util import get_random_doc
 | 
						|
 | 
						|
from spacy import util
 | 
						|
from spacy.util import dot_to_object
 | 
						|
from thinc.api import Config, Optimizer
 | 
						|
from spacy.gold.batchers import minibatch_by_words
 | 
						|
 | 
						|
from ..lang.en import English
 | 
						|
from ..lang.nl import Dutch
 | 
						|
from ..language import DEFAULT_CONFIG_PATH
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "doc_sizes, expected_batches",
 | 
						|
    [
 | 
						|
        ([400, 400, 199], [3]),
 | 
						|
        ([400, 400, 199, 3], [4]),
 | 
						|
        ([400, 400, 199, 3, 200], [3, 2]),
 | 
						|
        ([400, 400, 199, 3, 1], [5]),
 | 
						|
        ([400, 400, 199, 3, 1, 1500], [5]),  # 1500 will be discarded
 | 
						|
        ([400, 400, 199, 3, 1, 200], [3, 3]),
 | 
						|
        ([400, 400, 199, 3, 1, 999], [3, 3]),
 | 
						|
        ([400, 400, 199, 3, 1, 999, 999], [3, 2, 1, 1]),
 | 
						|
        ([1, 2, 999], [3]),
 | 
						|
        ([1, 2, 999, 1], [4]),
 | 
						|
        ([1, 200, 999, 1], [2, 2]),
 | 
						|
        ([1, 999, 200, 1], [2, 2]),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_util_minibatch(doc_sizes, expected_batches):
 | 
						|
    docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
 | 
						|
    tol = 0.2
 | 
						|
    batch_size = 1000
 | 
						|
    batches = list(
 | 
						|
        minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=True)
 | 
						|
    )
 | 
						|
    assert [len(batch) for batch in batches] == expected_batches
 | 
						|
 | 
						|
    max_size = batch_size + batch_size * tol
 | 
						|
    for batch in batches:
 | 
						|
        assert sum([len(doc) for doc in batch]) < max_size
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "doc_sizes, expected_batches",
 | 
						|
    [
 | 
						|
        ([400, 4000, 199], [1, 2]),
 | 
						|
        ([400, 400, 199, 3000, 200], [1, 4]),
 | 
						|
        ([400, 400, 199, 3, 1, 1500], [1, 5]),
 | 
						|
        ([400, 400, 199, 3000, 2000, 200, 200], [1, 1, 3, 2]),
 | 
						|
        ([1, 2, 9999], [1, 2]),
 | 
						|
        ([2000, 1, 2000, 1, 1, 1, 2000], [1, 1, 1, 4]),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_util_minibatch_oversize(doc_sizes, expected_batches):
 | 
						|
    """ Test that oversized documents are returned in their own batch"""
 | 
						|
    docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
 | 
						|
    tol = 0.2
 | 
						|
    batch_size = 1000
 | 
						|
    batches = list(
 | 
						|
        minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=False)
 | 
						|
    )
 | 
						|
    assert [len(batch) for batch in batches] == expected_batches
 | 
						|
 | 
						|
 | 
						|
def test_util_dot_section():
 | 
						|
    cfg_string = """
 | 
						|
    [nlp]
 | 
						|
    lang = "en"
 | 
						|
    pipeline = ["textcat"]
 | 
						|
    load_vocab_data = false
 | 
						|
 | 
						|
    [components]
 | 
						|
 | 
						|
    [components.textcat]
 | 
						|
    factory = "textcat"
 | 
						|
 | 
						|
    [components.textcat.model]
 | 
						|
    @architectures = "spacy.TextCatBOW.v1"
 | 
						|
    exclusive_classes = true
 | 
						|
    ngram_size = 1
 | 
						|
    no_output_layer = false
 | 
						|
    """
 | 
						|
    nlp_config = Config().from_str(cfg_string)
 | 
						|
    en_nlp, en_config = util.load_model_from_config(nlp_config, auto_fill=True)
 | 
						|
    default_config = Config().from_disk(DEFAULT_CONFIG_PATH)
 | 
						|
    default_config["nlp"]["lang"] = "nl"
 | 
						|
    nl_nlp, nl_config = util.load_model_from_config(default_config, auto_fill=True)
 | 
						|
    # Test that creation went OK
 | 
						|
    assert isinstance(en_nlp, English)
 | 
						|
    assert isinstance(nl_nlp, Dutch)
 | 
						|
    assert nl_nlp.pipe_names == []
 | 
						|
    assert en_nlp.pipe_names == ["textcat"]
 | 
						|
    # not exclusive_classes
 | 
						|
    assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] is False
 | 
						|
    # Test that default values got overwritten
 | 
						|
    assert not en_config["nlp"]["load_vocab_data"]
 | 
						|
    assert nl_config["nlp"]["load_vocab_data"]  # default value True
 | 
						|
    # Test proper functioning of 'dot_to_object'
 | 
						|
    with pytest.raises(KeyError):
 | 
						|
        dot_to_object(en_config, "nlp.pipeline.tagger")
 | 
						|
    with pytest.raises(KeyError):
 | 
						|
        dot_to_object(en_config, "nlp.unknownattribute")
 | 
						|
    assert not dot_to_object(en_config, "nlp.load_vocab_data")
 | 
						|
    assert dot_to_object(nl_config, "nlp.load_vocab_data")
 | 
						|
    assert isinstance(dot_to_object(nl_config, "training.optimizer"), Optimizer)
 |