mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-15 03:56:23 +03:00
401 lines
14 KiB
Python
401 lines
14 KiB
Python
import pytest
|
|
import numpy
|
|
from spacy.tokens import Doc, Span
|
|
from spacy.vocab import Vocab
|
|
from spacy.lexeme import Lexeme
|
|
from spacy.lang.en import English
|
|
from spacy.attrs import ENT_TYPE, ENT_IOB, SENT_START, HEAD, DEP, MORPH
|
|
|
|
from ..util import get_doc
|
|
|
|
|
|
@pytest.mark.parametrize("text", [["one", "two", "three"]])
|
|
def test_doc_api_compare_by_string_position(en_vocab, text):
|
|
doc = Doc(en_vocab, words=text)
|
|
# Get the tokens in this order, so their ID ordering doesn't match the idx
|
|
token3 = doc[-1]
|
|
token2 = doc[-2]
|
|
token1 = doc[-1]
|
|
token1, token2, token3 = doc
|
|
assert token1 < token2 < token3
|
|
assert not token1 > token2
|
|
assert token2 > token1
|
|
assert token2 <= token3
|
|
assert token3 >= token1
|
|
|
|
|
|
def test_doc_api_getitem(en_tokenizer):
|
|
text = "Give it back! He pleaded."
|
|
tokens = en_tokenizer(text)
|
|
assert tokens[0].text == "Give"
|
|
assert tokens[-1].text == "."
|
|
with pytest.raises(IndexError):
|
|
tokens[len(tokens)]
|
|
|
|
def to_str(span):
|
|
return "/".join(token.text for token in span)
|
|
|
|
span = tokens[1:1]
|
|
assert not to_str(span)
|
|
span = tokens[1:4]
|
|
assert to_str(span) == "it/back/!"
|
|
span = tokens[1:4:1]
|
|
assert to_str(span) == "it/back/!"
|
|
with pytest.raises(ValueError):
|
|
tokens[1:4:2]
|
|
with pytest.raises(ValueError):
|
|
tokens[1:4:-1]
|
|
|
|
span = tokens[-3:6]
|
|
assert to_str(span) == "He/pleaded"
|
|
span = tokens[4:-1]
|
|
assert to_str(span) == "He/pleaded"
|
|
span = tokens[-5:-3]
|
|
assert to_str(span) == "back/!"
|
|
span = tokens[5:4]
|
|
assert span.start == span.end == 5 and not to_str(span)
|
|
span = tokens[4:-3]
|
|
assert span.start == span.end == 4 and not to_str(span)
|
|
|
|
span = tokens[:]
|
|
assert to_str(span) == "Give/it/back/!/He/pleaded/."
|
|
span = tokens[4:]
|
|
assert to_str(span) == "He/pleaded/."
|
|
span = tokens[:4]
|
|
assert to_str(span) == "Give/it/back/!"
|
|
span = tokens[:-3]
|
|
assert to_str(span) == "Give/it/back/!"
|
|
span = tokens[-3:]
|
|
assert to_str(span) == "He/pleaded/."
|
|
|
|
span = tokens[4:50]
|
|
assert to_str(span) == "He/pleaded/."
|
|
span = tokens[-50:4]
|
|
assert to_str(span) == "Give/it/back/!"
|
|
span = tokens[-50:-40]
|
|
assert span.start == span.end == 0 and not to_str(span)
|
|
span = tokens[40:50]
|
|
assert span.start == span.end == 7 and not to_str(span)
|
|
|
|
span = tokens[1:4]
|
|
assert span[0].orth_ == "it"
|
|
subspan = span[:]
|
|
assert to_str(subspan) == "it/back/!"
|
|
subspan = span[:2]
|
|
assert to_str(subspan) == "it/back"
|
|
subspan = span[1:]
|
|
assert to_str(subspan) == "back/!"
|
|
subspan = span[:-1]
|
|
assert to_str(subspan) == "it/back"
|
|
subspan = span[-2:]
|
|
assert to_str(subspan) == "back/!"
|
|
subspan = span[1:2]
|
|
assert to_str(subspan) == "back"
|
|
subspan = span[-2:-1]
|
|
assert to_str(subspan) == "back"
|
|
subspan = span[-50:50]
|
|
assert to_str(subspan) == "it/back/!"
|
|
subspan = span[50:-50]
|
|
assert subspan.start == subspan.end == 4 and not to_str(subspan)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"text", ["Give it back! He pleaded.", " Give it back! He pleaded. "]
|
|
)
|
|
def test_doc_api_serialize(en_tokenizer, text):
|
|
tokens = en_tokenizer(text)
|
|
tokens[0].lemma_ = "lemma"
|
|
tokens[0].norm_ = "norm"
|
|
tokens[0].ent_kb_id_ = "ent_kb_id"
|
|
new_tokens = Doc(tokens.vocab).from_bytes(tokens.to_bytes())
|
|
assert tokens.text == new_tokens.text
|
|
assert [t.text for t in tokens] == [t.text for t in new_tokens]
|
|
assert [t.orth for t in tokens] == [t.orth for t in new_tokens]
|
|
assert new_tokens[0].lemma_ == "lemma"
|
|
assert new_tokens[0].norm_ == "norm"
|
|
assert new_tokens[0].ent_kb_id_ == "ent_kb_id"
|
|
|
|
new_tokens = Doc(tokens.vocab).from_bytes(
|
|
tokens.to_bytes(exclude=["tensor"]), exclude=["tensor"]
|
|
)
|
|
assert tokens.text == new_tokens.text
|
|
assert [t.text for t in tokens] == [t.text for t in new_tokens]
|
|
assert [t.orth for t in tokens] == [t.orth for t in new_tokens]
|
|
|
|
new_tokens = Doc(tokens.vocab).from_bytes(
|
|
tokens.to_bytes(exclude=["sentiment"]), exclude=["sentiment"]
|
|
)
|
|
assert tokens.text == new_tokens.text
|
|
assert [t.text for t in tokens] == [t.text for t in new_tokens]
|
|
assert [t.orth for t in tokens] == [t.orth for t in new_tokens]
|
|
|
|
|
|
def test_doc_api_set_ents(en_tokenizer):
|
|
text = "I use goggle chrone to surf the web"
|
|
tokens = en_tokenizer(text)
|
|
assert len(tokens.ents) == 0
|
|
tokens.ents = [(tokens.vocab.strings["PRODUCT"], 2, 4)]
|
|
assert len(list(tokens.ents)) == 1
|
|
assert [t.ent_iob for t in tokens] == [0, 0, 3, 1, 0, 0, 0, 0]
|
|
assert tokens.ents[0].label_ == "PRODUCT"
|
|
assert tokens.ents[0].start == 2
|
|
assert tokens.ents[0].end == 4
|
|
|
|
|
|
def test_doc_api_sents_empty_string(en_tokenizer):
|
|
doc = en_tokenizer("")
|
|
doc.is_parsed = True
|
|
sents = list(doc.sents)
|
|
assert len(sents) == 0
|
|
|
|
|
|
def test_doc_api_runtime_error(en_tokenizer):
|
|
# Example that caused run-time error while parsing Reddit
|
|
# fmt: off
|
|
text = "67% of black households are single parent \n\n72% of all black babies born out of wedlock \n\n50% of all black kids don\u2019t finish high school"
|
|
deps = ["nummod", "nsubj", "prep", "amod", "pobj", "ROOT", "amod", "attr", "", "nummod", "appos", "prep", "det",
|
|
"amod", "pobj", "acl", "prep", "prep", "pobj",
|
|
"", "nummod", "nsubj", "prep", "det", "amod", "pobj", "aux", "neg", "ccomp", "amod", "dobj"]
|
|
# fmt: on
|
|
tokens = en_tokenizer(text)
|
|
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], deps=deps)
|
|
nps = []
|
|
for np in doc.noun_chunks:
|
|
while len(np) > 1 and np[0].dep_ not in ("advmod", "amod", "compound"):
|
|
np = np[1:]
|
|
if len(np) > 1:
|
|
nps.append(np)
|
|
with doc.retokenize() as retokenizer:
|
|
for np in nps:
|
|
attrs = {
|
|
"tag": np.root.tag_,
|
|
"lemma": np.text,
|
|
"ent_type": np.root.ent_type_,
|
|
}
|
|
retokenizer.merge(np, attrs=attrs)
|
|
|
|
|
|
def test_doc_api_right_edge(en_tokenizer):
|
|
"""Test for bug occurring from Unshift action, causing incorrect right edge"""
|
|
# fmt: off
|
|
text = "I have proposed to myself, for the sake of such as live under the government of the Romans, to translate those books into the Greek tongue."
|
|
heads = [2, 1, 0, -1, -1, -3, 15, 1, -2, -1, 1, -3, -1, -1, 1, -2, -1, 1,
|
|
-2, -7, 1, -19, 1, -2, -3, 2, 1, -3, -26]
|
|
# fmt: on
|
|
|
|
tokens = en_tokenizer(text)
|
|
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
|
assert doc[6].text == "for"
|
|
subtree = [w.text for w in doc[6].subtree]
|
|
# fmt: off
|
|
assert subtree == ["for", "the", "sake", "of", "such", "as", "live", "under", "the", "government", "of", "the", "Romans", ","]
|
|
# fmt: on
|
|
assert doc[6].right_edge.text == ","
|
|
|
|
|
|
def test_doc_api_has_vector():
|
|
vocab = Vocab()
|
|
vocab.reset_vectors(width=2)
|
|
vocab.set_vector("kitten", vector=numpy.asarray([0.0, 2.0], dtype="f"))
|
|
doc = Doc(vocab, words=["kitten"])
|
|
assert doc.has_vector
|
|
|
|
|
|
def test_doc_api_similarity_match():
|
|
doc = Doc(Vocab(), words=["a"])
|
|
assert doc.similarity(doc[0]) == 1.0
|
|
assert doc.similarity(doc.vocab["a"]) == 1.0
|
|
doc2 = Doc(doc.vocab, words=["a", "b", "c"])
|
|
with pytest.warns(UserWarning):
|
|
assert doc.similarity(doc2[:1]) == 1.0
|
|
assert doc.similarity(doc2) == 0.0
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"sentence,heads,lca_matrix",
|
|
[
|
|
(
|
|
"the lazy dog slept",
|
|
[2, 1, 1, 0],
|
|
numpy.array([[0, 2, 2, 3], [2, 1, 2, 3], [2, 2, 2, 3], [3, 3, 3, 3]]),
|
|
),
|
|
(
|
|
"The lazy dog slept. The quick fox jumped",
|
|
[2, 1, 1, 0, -1, 2, 1, 1, 0],
|
|
numpy.array(
|
|
[
|
|
[0, 2, 2, 3, 3, -1, -1, -1, -1],
|
|
[2, 1, 2, 3, 3, -1, -1, -1, -1],
|
|
[2, 2, 2, 3, 3, -1, -1, -1, -1],
|
|
[3, 3, 3, 3, 3, -1, -1, -1, -1],
|
|
[3, 3, 3, 3, 4, -1, -1, -1, -1],
|
|
[-1, -1, -1, -1, -1, 5, 7, 7, 8],
|
|
[-1, -1, -1, -1, -1, 7, 6, 7, 8],
|
|
[-1, -1, -1, -1, -1, 7, 7, 7, 8],
|
|
[-1, -1, -1, -1, -1, 8, 8, 8, 8],
|
|
]
|
|
),
|
|
),
|
|
],
|
|
)
|
|
def test_lowest_common_ancestor(en_tokenizer, sentence, heads, lca_matrix):
|
|
tokens = en_tokenizer(sentence)
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
|
|
lca = doc.get_lca_matrix()
|
|
assert (lca == lca_matrix).all()
|
|
assert lca[1, 1] == 1
|
|
assert lca[0, 1] == 2
|
|
assert lca[1, 2] == 2
|
|
|
|
|
|
def test_doc_is_nered(en_vocab):
|
|
words = ["I", "live", "in", "New", "York"]
|
|
doc = Doc(en_vocab, words=words)
|
|
assert not doc.is_nered
|
|
doc.ents = [Span(doc, 3, 5, label="GPE")]
|
|
assert doc.is_nered
|
|
# Test creating doc from array with unknown values
|
|
arr = numpy.array([[0, 0], [0, 0], [0, 0], [384, 3], [384, 1]], dtype="uint64")
|
|
doc = Doc(en_vocab, words=words).from_array([ENT_TYPE, ENT_IOB], arr)
|
|
assert doc.is_nered
|
|
# Test serialization
|
|
new_doc = Doc(en_vocab).from_bytes(doc.to_bytes())
|
|
assert new_doc.is_nered
|
|
|
|
|
|
def test_doc_from_array_sent_starts(en_vocab):
|
|
words = ["I", "live", "in", "New", "York", ".", "I", "like", "cats", "."]
|
|
heads = [0, 0, 0, 0, 0, 0, 6, 6, 6, 6]
|
|
# fmt: off
|
|
deps = ["ROOT", "dep", "dep", "dep", "dep", "dep", "ROOT", "dep", "dep", "dep", "dep"]
|
|
# fmt: on
|
|
doc = Doc(en_vocab, words=words)
|
|
for i, (dep, head) in enumerate(zip(deps, heads)):
|
|
doc[i].dep_ = dep
|
|
doc[i].head = doc[head]
|
|
if head == i:
|
|
doc[i].is_sent_start = True
|
|
doc.is_parsed
|
|
|
|
attrs = [SENT_START, HEAD]
|
|
arr = doc.to_array(attrs)
|
|
new_doc = Doc(en_vocab, words=words)
|
|
with pytest.raises(ValueError):
|
|
new_doc.from_array(attrs, arr)
|
|
|
|
attrs = [SENT_START, DEP]
|
|
arr = doc.to_array(attrs)
|
|
new_doc = Doc(en_vocab, words=words)
|
|
new_doc.from_array(attrs, arr)
|
|
assert [t.is_sent_start for t in doc] == [t.is_sent_start for t in new_doc]
|
|
assert not new_doc.is_parsed
|
|
|
|
attrs = [HEAD, DEP]
|
|
arr = doc.to_array(attrs)
|
|
new_doc = Doc(en_vocab, words=words)
|
|
new_doc.from_array(attrs, arr)
|
|
assert [t.is_sent_start for t in doc] == [t.is_sent_start for t in new_doc]
|
|
assert new_doc.is_parsed
|
|
|
|
|
|
def test_doc_from_array_morph(en_vocab):
|
|
words = ["I", "live", "in", "New", "York", "."]
|
|
# fmt: off
|
|
morphs = ["Feat1=A", "Feat1=B", "Feat1=C", "Feat1=A|Feat2=D", "Feat2=E", "Feat3=F"]
|
|
# fmt: on
|
|
doc = Doc(en_vocab, words=words)
|
|
for i, morph in enumerate(morphs):
|
|
doc[i].morph_ = morph
|
|
|
|
attrs = [MORPH]
|
|
arr = doc.to_array(attrs)
|
|
new_doc = Doc(en_vocab, words=words)
|
|
new_doc.from_array(attrs, arr)
|
|
|
|
assert [t.morph_ for t in new_doc] == morphs
|
|
assert [t.morph_ for t in doc] == [t.morph_ for t in new_doc]
|
|
|
|
|
|
def test_doc_api_from_docs(en_tokenizer, de_tokenizer):
|
|
en_texts = ["Merging the docs is fun.", "They don't think alike."]
|
|
de_text = "Wie war die Frage?"
|
|
en_docs = [en_tokenizer(text) for text in en_texts]
|
|
docs_idx = en_texts[0].index("docs")
|
|
de_doc = de_tokenizer(de_text)
|
|
en_docs[0].user_data[("._.", "is_ambiguous", docs_idx, None)] = (
|
|
True,
|
|
None,
|
|
None,
|
|
None,
|
|
)
|
|
|
|
assert Doc.from_docs([]) is None
|
|
|
|
assert de_doc is not Doc.from_docs([de_doc])
|
|
assert str(de_doc) == str(Doc.from_docs([de_doc]))
|
|
|
|
with pytest.raises(ValueError):
|
|
Doc.from_docs(en_docs + [de_doc])
|
|
|
|
m_doc = Doc.from_docs(en_docs)
|
|
assert len(en_docs) == len(list(m_doc.sents))
|
|
assert len(str(m_doc)) > len(en_texts[0]) + len(en_texts[1])
|
|
assert str(m_doc) == " ".join(en_texts)
|
|
p_token = m_doc[len(en_docs[0]) - 1]
|
|
assert p_token.text == "." and bool(p_token.whitespace_)
|
|
en_docs_tokens = [t for doc in en_docs for t in doc]
|
|
assert len(m_doc) == len(en_docs_tokens)
|
|
think_idx = len(en_texts[0]) + 1 + en_texts[1].index("think")
|
|
assert m_doc[9].idx == think_idx
|
|
with pytest.raises(AttributeError):
|
|
# not callable, because it was not set via set_extension
|
|
m_doc[2]._.is_ambiguous
|
|
assert len(m_doc.user_data) == len(en_docs[0].user_data) # but it's there
|
|
|
|
m_doc = Doc.from_docs(en_docs, ensure_whitespace=False)
|
|
assert len(en_docs) == len(list(m_doc.sents))
|
|
assert len(str(m_doc)) == len(en_texts[0]) + len(en_texts[1])
|
|
assert str(m_doc) == "".join(en_texts)
|
|
p_token = m_doc[len(en_docs[0]) - 1]
|
|
assert p_token.text == "." and not bool(p_token.whitespace_)
|
|
en_docs_tokens = [t for doc in en_docs for t in doc]
|
|
assert len(m_doc) == len(en_docs_tokens)
|
|
think_idx = len(en_texts[0]) + 0 + en_texts[1].index("think")
|
|
assert m_doc[9].idx == think_idx
|
|
|
|
m_doc = Doc.from_docs(en_docs, attrs=["lemma", "length", "pos"])
|
|
with pytest.raises(ValueError):
|
|
# important attributes from sentenziser or parser are missing
|
|
assert list(m_doc.sents)
|
|
assert len(str(m_doc)) > len(en_texts[0]) + len(en_texts[1])
|
|
# space delimiter considered, although spacy attribute was missing
|
|
assert str(m_doc) == " ".join(en_texts)
|
|
p_token = m_doc[len(en_docs[0]) - 1]
|
|
assert p_token.text == "." and bool(p_token.whitespace_)
|
|
en_docs_tokens = [t for doc in en_docs for t in doc]
|
|
assert len(m_doc) == len(en_docs_tokens)
|
|
think_idx = len(en_texts[0]) + 1 + en_texts[1].index("think")
|
|
assert m_doc[9].idx == think_idx
|
|
|
|
|
|
def test_doc_lang(en_vocab):
|
|
doc = Doc(en_vocab, words=["Hello", "world"])
|
|
assert doc.lang_ == "en"
|
|
assert doc.lang == en_vocab.strings["en"]
|
|
assert doc[0].lang_ == "en"
|
|
assert doc[0].lang == en_vocab.strings["en"]
|
|
nlp = English()
|
|
doc = nlp("Hello world")
|
|
assert doc.lang_ == "en"
|
|
assert doc.lang == en_vocab.strings["en"]
|
|
assert doc[0].lang_ == "en"
|
|
assert doc[0].lang == en_vocab.strings["en"]
|
|
|
|
|
|
def test_token_lexeme(en_vocab):
|
|
"""Test that tokens expose their lexeme."""
|
|
token = Doc(en_vocab, words=["Hello", "world"])[0]
|
|
assert isinstance(token.lex, Lexeme)
|
|
assert token.lex.text == token.text
|
|
assert en_vocab[token.orth] == token.lex
|