mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Refactor Docs.is_ flags
* Add derived `Doc.has_annotation` method
  * `Doc.has_annotation(attr)` returns `True` for partial annotation
  * `Doc.has_annotation(attr, require_complete=True)` returns `True` for
    complete annotation
* Add deprecation warnings to `is_tagged`, `is_parsed`, `is_sentenced`
and `is_nered`
* Add `Doc._get_array_attrs()`, which returns a full list of `Doc` attrs
for use with `Doc.to_array`, `Doc.to_bytes` and `Doc.from_docs`. The
list is the `DocBin` attributes list plus `SPACY` and `LENGTH`.
Notes on `Doc.has_annotation`:
* `HEAD` is converted to `DEP` because heads don't have an unset state
* Accept `IS_SENT_START` as a synonym of `SENT_START`
Additional changes:
* Add `NORM`, `ENT_ID` and `SENT_START` to default attributes for
`DocBin`
* In `Doc.from_array()` the presence of `DEP` causes `HEAD` to override
`SENT_START`
* In `Doc.from_array()` using `attrs` other than
`Doc._get_array_attrs()` (i.e., a user's custom list rather than our
default internal list) with both `HEAD` and `SENT_START` shows a warning
that `HEAD` will override `SENT_START`
* `set_children_from_heads` does not require dependency labels to set
sentence boundaries and sets `sent_start` for all non-sentence starts to
`-1`
* Fix call to set_children_form_heads
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
	
			
		
			
				
	
	
		
			75 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			75 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
from spacy.pipeline.functions import merge_subtokens
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.tokens import Span
 | 
						|
 | 
						|
from ..util import get_doc
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def doc(en_tokenizer):
 | 
						|
    # fmt: off
 | 
						|
    text = "This is a sentence. This is another sentence. And a third."
 | 
						|
    heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3, 1, 1, 1, 0]
 | 
						|
    deps = ["nsubj", "ROOT", "subtok", "attr", "punct", "nsubj", "ROOT",
 | 
						|
            "subtok", "attr", "punct", "subtok", "subtok", "subtok", "ROOT"]
 | 
						|
    # fmt: on
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    return get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def doc2(en_tokenizer):
 | 
						|
    text = "I like New York in Autumn."
 | 
						|
    heads = [1, 0, 1, -2, -3, -1, -5]
 | 
						|
    tags = ["PRP", "IN", "NNP", "NNP", "IN", "NNP", "."]
 | 
						|
    pos = ["PRON", "VERB", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
 | 
						|
    deps = ["ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"]
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = get_doc(
 | 
						|
        tokens.vocab,
 | 
						|
        words=[t.text for t in tokens],
 | 
						|
        heads=heads,
 | 
						|
        tags=tags,
 | 
						|
        pos=pos,
 | 
						|
        deps=deps,
 | 
						|
    )
 | 
						|
    doc.ents = [Span(doc, 2, 4, doc.vocab.strings["GPE"])]
 | 
						|
    return doc
 | 
						|
 | 
						|
 | 
						|
def test_merge_subtokens(doc):
 | 
						|
    doc = merge_subtokens(doc)
 | 
						|
    # get_doc() doesn't set spaces, so the result is "And a third ."
 | 
						|
    assert [t.text for t in doc] == [
 | 
						|
        "This",
 | 
						|
        "is",
 | 
						|
        "a sentence",
 | 
						|
        ".",
 | 
						|
        "This",
 | 
						|
        "is",
 | 
						|
        "another sentence",
 | 
						|
        ".",
 | 
						|
        "And a third .",
 | 
						|
    ]
 | 
						|
 | 
						|
 | 
						|
def test_factories_merge_noun_chunks(doc2):
 | 
						|
    assert len(doc2) == 7
 | 
						|
    nlp = Language()
 | 
						|
    merge_noun_chunks = nlp.create_pipe("merge_noun_chunks")
 | 
						|
    merge_noun_chunks(doc2)
 | 
						|
    assert len(doc2) == 6
 | 
						|
    assert doc2[2].text == "New York"
 | 
						|
 | 
						|
 | 
						|
def test_factories_merge_ents(doc2):
 | 
						|
    assert len(doc2) == 7
 | 
						|
    assert len(list(doc2.ents)) == 1
 | 
						|
    nlp = Language()
 | 
						|
    merge_entities = nlp.create_pipe("merge_entities")
 | 
						|
    merge_entities(doc2)
 | 
						|
    assert len(doc2) == 6
 | 
						|
    assert len(list(doc2.ents)) == 1
 | 
						|
    assert doc2[2].text == "New York"
 |