spaCy/bin/wiki_entity_linking/wikidata_pretrain_kb.py
Euan Dowers a6830d60e8 Changes to wiki_entity_linker (#4235)
* Changes to wiki_entity_linker

* No more f-strings

* Make some requested changes

* Add back option to get descriptions from wd not wp

* Fix logs

* Address comments and clean evaluation

* Remove type hints

* Refactor evaluation, add back metrics by label

* Address comments

* Log training performance as well as dev
2019-09-13 17:03:57 +02:00

156 lines
6.5 KiB
Python

# coding: utf-8
"""Script to process Wikipedia and Wikidata dumps and create a knowledge base (KB)
with specific parameters. Intermediate files are written to disk.
Running the full pipeline on a standard laptop, may take up to 13 hours of processing.
Use the -p, -d and -s options to speed up processing using the intermediate files
from a previous run.
For the Wikidata dump: get the latest-all.json.bz2 from https://dumps.wikimedia.org/wikidatawiki/entities/
For the Wikipedia dump: get enwiki-latest-pages-articles-multistream.xml.bz2
from https://dumps.wikimedia.org/enwiki/latest/
"""
from __future__ import unicode_literals
import logging
from pathlib import Path
import plac
from bin.wiki_entity_linking import wikipedia_processor as wp, wikidata_processor as wd
from bin.wiki_entity_linking import kb_creator
from bin.wiki_entity_linking import training_set_creator
from bin.wiki_entity_linking import TRAINING_DATA_FILE, KB_FILE, ENTITY_DESCR_PATH, KB_MODEL_DIR, LOG_FORMAT
from bin.wiki_entity_linking import ENTITY_FREQ_PATH, PRIOR_PROB_PATH, ENTITY_DEFS_PATH
import spacy
logger = logging.getLogger(__name__)
@plac.annotations(
wd_json=("Path to the downloaded WikiData JSON dump.", "positional", None, Path),
wp_xml=("Path to the downloaded Wikipedia XML dump.", "positional", None, Path),
output_dir=("Output directory", "positional", None, Path),
model=("Model name or path, should include pretrained vectors.", "positional", None, str),
max_per_alias=("Max. # entities per alias (default 10)", "option", "a", int),
min_freq=("Min. count of an entity in the corpus (default 20)", "option", "f", int),
min_pair=("Min. count of entity-alias pairs (default 5)", "option", "c", int),
entity_vector_length=("Length of entity vectors (default 64)", "option", "v", int),
loc_prior_prob=("Location to file with prior probabilities", "option", "p", Path),
loc_entity_defs=("Location to file with entity definitions", "option", "d", Path),
loc_entity_desc=("Location to file with entity descriptions", "option", "s", Path),
descriptions_from_wikipedia=("Flag for using wp descriptions not wd", "flag", "wp"),
limit=("Optional threshold to limit lines read from dumps", "option", "l", int),
lang=("Optional language for which to get wikidata titles. Defaults to 'en'", "option", "la", str),
)
def main(
wd_json,
wp_xml,
output_dir,
model,
max_per_alias=10,
min_freq=20,
min_pair=5,
entity_vector_length=64,
loc_prior_prob=None,
loc_entity_defs=None,
loc_entity_desc=None,
descriptions_from_wikipedia=False,
limit=None,
lang="en",
):
entity_defs_path = loc_entity_defs if loc_entity_defs else output_dir / ENTITY_DEFS_PATH
entity_descr_path = loc_entity_desc if loc_entity_desc else output_dir / ENTITY_DESCR_PATH
entity_freq_path = output_dir / ENTITY_FREQ_PATH
prior_prob_path = loc_prior_prob if loc_prior_prob else output_dir / PRIOR_PROB_PATH
training_entities_path = output_dir / TRAINING_DATA_FILE
kb_path = output_dir / KB_FILE
logger.info("Creating KB with Wikipedia and WikiData")
if limit is not None:
logger.warning("Warning: reading only {} lines of Wikipedia/Wikidata dumps.".format(limit))
# STEP 0: set up IO
if not output_dir.exists():
output_dir.mkdir(parents=True)
# STEP 1: create the NLP object
logger.info("STEP 1: Loading model {}".format(model))
nlp = spacy.load(model)
# check the length of the nlp vectors
if "vectors" not in nlp.meta or not nlp.vocab.vectors.size:
raise ValueError(
"The `nlp` object should have access to pre-trained word vectors, "
" cf. https://spacy.io/usage/models#languages."
)
# STEP 2: create prior probabilities from WP
if not prior_prob_path.exists():
# It takes about 2h to process 1000M lines of Wikipedia XML dump
logger.info("STEP 2: writing prior probabilities to {}".format(prior_prob_path))
wp.read_prior_probs(wp_xml, prior_prob_path, limit=limit)
logger.info("STEP 2: reading prior probabilities from {}".format(prior_prob_path))
# STEP 3: deduce entity frequencies from WP (takes only a few minutes)
logger.info("STEP 3: calculating entity frequencies")
wp.write_entity_counts(prior_prob_path, entity_freq_path, to_print=False)
# STEP 4: reading definitions and (possibly) descriptions from WikiData or from file
message = " and descriptions" if not descriptions_from_wikipedia else ""
if (not entity_defs_path.exists()) or (not descriptions_from_wikipedia and not entity_descr_path.exists()):
# It takes about 10h to process 55M lines of Wikidata JSON dump
logger.info("STEP 4: parsing wikidata for entity definitions" + message)
title_to_id, id_to_descr = wd.read_wikidata_entities_json(
wd_json,
limit,
to_print=False,
lang=lang,
parse_descriptions=(not descriptions_from_wikipedia),
)
wd.write_entity_files(entity_defs_path, title_to_id)
if not descriptions_from_wikipedia:
wd.write_entity_description_files(entity_descr_path, id_to_descr)
logger.info("STEP 4: read entity definitions" + message)
# STEP 5: Getting gold entities from wikipedia
message = " and descriptions" if descriptions_from_wikipedia else ""
if (not training_entities_path.exists()) or (descriptions_from_wikipedia and not entity_descr_path.exists()):
logger.info("STEP 5: parsing wikipedia for gold entities" + message)
training_set_creator.create_training_examples_and_descriptions(
wp_xml,
entity_defs_path,
entity_descr_path,
training_entities_path,
parse_descriptions=descriptions_from_wikipedia,
limit=limit,
)
logger.info("STEP 5: read gold entities" + message)
# STEP 6: creating the actual KB
# It takes ca. 30 minutes to pretrain the entity embeddings
logger.info("STEP 6: creating the KB at {}".format(kb_path))
kb = kb_creator.create_kb(
nlp=nlp,
max_entities_per_alias=max_per_alias,
min_entity_freq=min_freq,
min_occ=min_pair,
entity_def_input=entity_defs_path,
entity_descr_path=entity_descr_path,
count_input=entity_freq_path,
prior_prob_input=prior_prob_path,
entity_vector_length=entity_vector_length,
)
kb.dump(kb_path)
nlp.to_disk(output_dir / KB_MODEL_DIR)
logger.info("Done!")
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, format=LOG_FORMAT)
plac.call(main)