spaCy/spacy/tests/doc/test_add_entities.py
2020-06-20 14:15:04 +02:00

57 lines
1.6 KiB
Python

from spacy.pipeline import EntityRecognizer
from spacy.tokens import Span
import pytest
from ..util import get_doc
from spacy.pipeline.defaults import default_ner
def test_doc_add_entities_set_ents_iob(en_vocab):
text = ["This", "is", "a", "lion"]
doc = get_doc(en_vocab, text)
config = {
"learn_tokens": False,
"min_action_freq": 30,
"beam_width": 1,
"beam_update_prob": 1.0,
}
ner = EntityRecognizer(en_vocab, default_ner(), **config)
ner.begin_training([])
ner(doc)
assert len(list(doc.ents)) == 0
assert [w.ent_iob_ for w in doc] == (["O"] * len(doc))
doc.ents = [(doc.vocab.strings["ANIMAL"], 3, 4)]
assert [w.ent_iob_ for w in doc] == ["O", "O", "O", "B"]
doc.ents = [(doc.vocab.strings["WORD"], 0, 2)]
assert [w.ent_iob_ for w in doc] == ["B", "I", "O", "O"]
def test_ents_reset(en_vocab):
text = ["This", "is", "a", "lion"]
doc = get_doc(en_vocab, text)
config = {
"learn_tokens": False,
"min_action_freq": 30,
"beam_width": 1,
"beam_update_prob": 1.0,
}
ner = EntityRecognizer(en_vocab, default_ner(), **config)
ner.begin_training([])
ner(doc)
assert [t.ent_iob_ for t in doc] == (["O"] * len(doc))
doc.ents = list(doc.ents)
assert [t.ent_iob_ for t in doc] == (["O"] * len(doc))
def test_add_overlapping_entities(en_vocab):
text = ["Louisiana", "Office", "of", "Conservation"]
doc = get_doc(en_vocab, text)
entity = Span(doc, 0, 4, label=391)
doc.ents = [entity]
new_entity = Span(doc, 0, 1, label=392)
with pytest.raises(ValueError):
doc.ents = list(doc.ents) + [new_entity]