mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-15 12:06:25 +03:00
370 lines
14 KiB
Cython
370 lines
14 KiB
Cython
# cython: profile=True
|
|
# cython: experimental_cpp_class_def=True
|
|
"""
|
|
MALT-style dependency parser
|
|
"""
|
|
from __future__ import unicode_literals
|
|
cimport cython
|
|
|
|
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
|
|
|
|
from libc.stdint cimport uint32_t, uint64_t
|
|
from libc.string cimport memset, memcpy
|
|
from libc.stdlib cimport rand
|
|
from libc.math cimport log, exp
|
|
import random
|
|
import os.path
|
|
from os import path
|
|
import shutil
|
|
import json
|
|
|
|
from cymem.cymem cimport Pool, Address
|
|
from murmurhash.mrmr cimport hash64
|
|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
|
|
|
|
|
|
from util import Config
|
|
|
|
from thinc.linear.features cimport ConjunctionExtracter
|
|
from thinc.structs cimport FeatureC, ExampleC
|
|
|
|
from thinc.extra.search cimport Beam
|
|
from thinc.extra.search cimport MaxViolation
|
|
from thinc.extra.eg cimport Example
|
|
|
|
from ..structs cimport TokenC
|
|
|
|
from ..tokens.doc cimport Doc
|
|
from ..strings cimport StringStore
|
|
|
|
from .transition_system cimport TransitionSystem, Transition
|
|
|
|
from ..gold cimport GoldParse
|
|
|
|
from . import _parse_features
|
|
from ._parse_features cimport CONTEXT_SIZE
|
|
from ._parse_features cimport fill_context
|
|
from .stateclass cimport StateClass
|
|
from .parser cimport Parser
|
|
from .parser cimport ParserPerceptron
|
|
from .parser cimport ParserNeuralNet
|
|
|
|
DEBUG = False
|
|
def set_debug(val):
|
|
global DEBUG
|
|
DEBUG = val
|
|
|
|
|
|
def get_templates(name):
|
|
pf = _parse_features
|
|
if name == 'ner':
|
|
return pf.ner
|
|
elif name == 'debug':
|
|
return pf.unigrams
|
|
else:
|
|
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
|
|
pf.tree_shape + pf.trigrams)
|
|
|
|
|
|
cdef int BEAM_WIDTH = 8
|
|
|
|
|
|
cdef class BeamParser(Parser):
|
|
cdef public int beam_width
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
self.beam_width = kwargs.get('beam_width', BEAM_WIDTH)
|
|
Parser.__init__(self, *args, **kwargs)
|
|
|
|
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) with gil:
|
|
self._parseC(tokens, length, nr_feat, nr_class)
|
|
|
|
cdef int _parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) except -1:
|
|
cdef Beam beam = Beam(self.moves.n_moves, self.beam_width)
|
|
beam.initialize(_init_state, length, tokens)
|
|
beam.check_done(_check_final_state, NULL)
|
|
while not beam.is_done:
|
|
self._advance_beam(beam, None, False)
|
|
state = <StateClass>beam.at(0)
|
|
self.moves.finalize_state(state.c)
|
|
for i in range(length):
|
|
tokens[i] = state.c._sent[i]
|
|
_cleanup(beam)
|
|
|
|
def train(self, Doc tokens, GoldParse gold_parse):
|
|
self.moves.preprocess_gold(gold_parse)
|
|
cdef Beam pred = Beam(self.moves.n_moves, self.beam_width)
|
|
pred.initialize(_init_state, tokens.length, tokens.c)
|
|
pred.check_done(_check_final_state, NULL)
|
|
|
|
cdef Beam gold = Beam(self.moves.n_moves, self.beam_width)
|
|
gold.initialize(_init_state, tokens.length, tokens.c)
|
|
gold.check_done(_check_final_state, NULL)
|
|
while not pred.is_done and not gold.is_done:
|
|
# We search separately here, to allow for ambiguity in the gold
|
|
# parse.
|
|
self._advance_beam(pred, gold_parse, False)
|
|
self._advance_beam(gold, gold_parse, True)
|
|
# Early update
|
|
if pred.min_score > gold.score:
|
|
break
|
|
# Gather the partition function --- Z --- by which we can normalize the
|
|
# scores into a probability distribution. The simple idea here is that
|
|
# we clip the probability of all parses outside the beam to 0.
|
|
cdef long double Z = 0.0
|
|
for i in range(pred.size):
|
|
# Make sure we've only got negative examples here.
|
|
# Otherwise, we might double-count the gold.
|
|
if pred._states[i].loss > 0:
|
|
Z += exp(pred._states[i].score)
|
|
if Z > 0: # If no negative examples, don't update.
|
|
Z += exp(gold.score)
|
|
for i, hist in enumerate(pred.histories):
|
|
if pred._states[i].loss > 0:
|
|
# Update with the negative example.
|
|
# Gradient of loss is P(parse) - 0
|
|
self._update_dense(tokens, hist, exp(pred._states[i].score) / Z)
|
|
# Update with the positive example.
|
|
# Gradient of loss is P(parse) - 1
|
|
self._update_dense(tokens, gold.histories[0], (exp(gold.score) / Z) - 1)
|
|
_cleanup(pred)
|
|
_cleanup(gold)
|
|
return pred.loss
|
|
|
|
def _advance_beam(self, Beam beam, GoldParse gold, bint follow_gold):
|
|
cdef Example py_eg = Example(nr_class=self.moves.n_moves, nr_atom=CONTEXT_SIZE,
|
|
nr_feat=self.model.nr_feat, widths=self.model.widths)
|
|
cdef ExampleC* eg = py_eg.c
|
|
|
|
cdef ParserNeuralNet model = self.model
|
|
for i in range(beam.size):
|
|
py_eg.reset()
|
|
stcls = <StateClass>beam.at(i)
|
|
if not stcls.c.is_final():
|
|
model.set_featuresC(eg, stcls.c)
|
|
model.set_scoresC(beam.scores[i], eg.features, eg.nr_feat, 1)
|
|
self.moves.set_valid(beam.is_valid[i], stcls.c)
|
|
if gold is not None:
|
|
for i in range(beam.size):
|
|
py_eg.reset()
|
|
stcls = <StateClass>beam.at(i)
|
|
if not stcls.c.is_final():
|
|
self.moves.set_costs(beam.is_valid[i], beam.costs[i], stcls, gold)
|
|
if follow_gold:
|
|
for j in range(self.moves.n_moves):
|
|
beam.is_valid[i][j] *= beam.costs[i][j] == 0
|
|
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
|
|
beam.check_done(_check_final_state, NULL)
|
|
|
|
def _update_dense(self, Doc doc, history, weight_t loss):
|
|
cdef Example py_eg = Example(nr_class=self.moves.n_moves,
|
|
nr_atom=CONTEXT_SIZE,
|
|
nr_feat=self.model.nr_feat,
|
|
widths=self.model.widths)
|
|
cdef ExampleC* eg = py_eg.c
|
|
cdef ParserNeuralNet model = self.model
|
|
stcls = StateClass.init(doc.c, doc.length)
|
|
self.moves.initialize_state(stcls.c)
|
|
for clas in history:
|
|
model.set_featuresC(eg, stcls.c)
|
|
self.moves.set_valid(eg.is_valid, stcls.c)
|
|
for i in range(self.moves.n_moves):
|
|
eg.costs[i] = loss if i == clas else 0
|
|
model.updateC(
|
|
eg.features, eg.nr_feat, True, eg.costs, eg.is_valid, False)
|
|
self.moves.c[clas].do(stcls.c, self.moves.c[clas].label)
|
|
py_eg.reset()
|
|
|
|
def _update(self, Doc tokens, list hist, weight_t inc):
|
|
cdef Pool mem = Pool()
|
|
cdef atom_t[CONTEXT_SIZE] context
|
|
features = <FeatureC*>mem.alloc(self.model.nr_feat, sizeof(FeatureC))
|
|
|
|
cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
|
|
self.moves.initialize_state(stcls.c)
|
|
|
|
cdef class_t clas
|
|
cdef ParserPerceptron model = self.model
|
|
for clas in hist:
|
|
fill_context(context, stcls.c)
|
|
nr_feat = model.extracter.set_features(features, context)
|
|
for feat in features[:nr_feat]:
|
|
model.update_weight(feat.key, clas, feat.value * inc)
|
|
self.moves.c[clas].do(stcls.c, self.moves.c[clas].label)
|
|
|
|
|
|
# These are passed as callbacks to thinc.search.Beam
|
|
cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1:
|
|
dest = <StateClass>_dest
|
|
src = <StateClass>_src
|
|
moves = <const Transition*>_moves
|
|
dest.clone(src)
|
|
moves[clas].do(dest.c, moves[clas].label)
|
|
|
|
|
|
cdef void* _init_state(Pool mem, int length, void* tokens) except NULL:
|
|
cdef StateClass st = StateClass.init(<const TokenC*>tokens, length)
|
|
# Ensure sent_start is set to 0 throughout
|
|
for i in range(st.c.length):
|
|
st.c._sent[i].sent_start = False
|
|
st.c._sent[i].l_edge = i
|
|
st.c._sent[i].r_edge = i
|
|
st.fast_forward()
|
|
Py_INCREF(st)
|
|
return <void*>st
|
|
|
|
|
|
cdef int _check_final_state(void* _state, void* extra_args) except -1:
|
|
return (<StateClass>_state).is_final()
|
|
|
|
|
|
def _cleanup(Beam beam):
|
|
for i in range(beam.width):
|
|
Py_XDECREF(<PyObject*>beam._states[i].content)
|
|
Py_XDECREF(<PyObject*>beam._parents[i].content)
|
|
|
|
|
|
cdef hash_t _hash_state(void* _state, void* _) except 0:
|
|
state = <StateClass>_state
|
|
return state.c.hash()
|
|
|
|
#
|
|
# def _maxent_update(self, Doc doc, pred_scores, pred_hist, gold_scores, gold_hist):
|
|
# Z = 0
|
|
# for i, (score, history) in enumerate(zip(pred_scores, pred_hist)):
|
|
# prob = exp(score)
|
|
# if prob < 1e-6:
|
|
# continue
|
|
# stcls = StateClass.init(doc.c, doc.length)
|
|
# self.moves.initialize_state(stcls.c)
|
|
# for clas in history:
|
|
# delta_loss[clas] = prob * 1/Z
|
|
# gradient = [(input_ * prob) / Z for input_ in hidden]
|
|
# fill_context(context, stcls.c)
|
|
# nr_feat = model.extracter.set_features(features, context)
|
|
# for feat in features[:nr_feat]:
|
|
# key = (clas, feat.key)
|
|
# counts[key] = counts.get(key, 0.0) + feat.value
|
|
# self.moves.c[clas].do(stcls.c, self.moves.c[clas].label)
|
|
# for key in counts:
|
|
# counts[key] *= prob
|
|
# Z += prob
|
|
# gZ, g_counts = self._maxent_counts(doc, gold_scores, gold_hist)
|
|
# for (clas, feat), value in g_counts.items():
|
|
# self.model.update_weight(feat, clas, value / gZ)
|
|
#
|
|
# Z, counts = self._maxent_counts(doc, pred_scores, pred_hist)
|
|
# for (clas, feat), value in counts.items():
|
|
# self.model.update_weight(feat, clas, -value / (Z + gZ))
|
|
#
|
|
#
|
|
|
|
|
|
# def _maxent_update(self, doc, pred_scores, pred_hist, gold_scores, gold_hist,
|
|
# step_size=0.001):
|
|
# cdef weight_t Z, gZ, value
|
|
# cdef feat_t feat
|
|
# cdef class_t clas
|
|
# gZ, g_counts = self._maxent_counts(doc, gold_scores, gold_hist)
|
|
# Z, counts = self._maxent_counts(doc, pred_scores, pred_hist)
|
|
# update = {}
|
|
# if gZ > 0:
|
|
# for (clas, feat), value in g_counts.items():
|
|
# update[(clas, feat)] = value / gZ
|
|
# Z += gZ
|
|
# for (clas, feat), value in counts.items():
|
|
# update.setdefault((clas, feat), 0.0)
|
|
# update[(clas, feat)] -= value / Z
|
|
# for (clas, feat), value in update.items():
|
|
# if value < 1000:
|
|
# self.model.update_weight(feat, clas, step_size * value)
|
|
#
|
|
# def _maxent_counts(self, Doc doc, scores, history):
|
|
# cdef Pool mem = Pool()
|
|
# cdef atom_t[CONTEXT_SIZE] context
|
|
# features = <FeatureC*>mem.alloc(self.model.nr_feat, sizeof(FeatureC))
|
|
#
|
|
# cdef StateClass stcls
|
|
#
|
|
# cdef class_t clas
|
|
# cdef ParserPerceptron model = self.model
|
|
#
|
|
# cdef weight_t Z = 0.0
|
|
# cdef weight_t score
|
|
# counts = {}
|
|
# for i, (score, history) in enumerate(zip(scores, history)):
|
|
# prob = exp(score)
|
|
# if prob < 1e-6:
|
|
# continue
|
|
# stcls = StateClass.init(doc.c, doc.length)
|
|
# self.moves.initialize_state(stcls.c)
|
|
# for clas in history:
|
|
# fill_context(context, stcls.c)
|
|
# nr_feat = model.extracter.set_features(features, context)
|
|
# for feat in features[:nr_feat]:
|
|
# key = (clas, feat.key)
|
|
# counts[key] = counts.get(key, 0.0) + feat.value
|
|
# self.moves.c[clas].do(stcls.c, self.moves.c[clas].label)
|
|
# for key in counts:
|
|
# counts[key] *= prob
|
|
# Z += prob
|
|
# return Z, counts
|
|
#
|
|
#
|
|
# def _advance_beam(self, Beam beam, GoldParse gold, bint follow_gold, words):
|
|
# cdef atom_t[CONTEXT_SIZE] context
|
|
# cdef int i, j, cost
|
|
# cdef bint is_valid
|
|
# cdef const Transition* move
|
|
#
|
|
# for i in range(beam.size):
|
|
# state = <StateClass>beam.at(i)
|
|
# if not state.is_final():
|
|
# # What the model is predicting here:
|
|
# # We know, separately, the probability of the current state
|
|
# # We can think of a state as a sequence of (action, score) pairs
|
|
# # We obtain a state by doing reduce(state, [act for act, score in scores])
|
|
# # We obtain its probability by doing sum(score for act, score in scores)
|
|
# #
|
|
# # So after running the forward pass, we have this output layer...
|
|
# # The output layer has N nodes in its output, for our N moves
|
|
# # The model asserts that:
|
|
# #
|
|
# # P(actions[i](state)) == score + output[i]
|
|
# #
|
|
# # i.e. each node holds a score that means "This is the difference
|
|
# # in goodness that will occur if you apply this action to this state.
|
|
# # If you apply this action, this is how I would judge the state."
|
|
# self.model.set_scoresC(beam.scores[i], eg)
|
|
# self.moves.set_validC(beam.is_valid[i], state)
|
|
# if gold is not None:
|
|
# for i in range(beam.size):
|
|
# state = <StateClass>beam.at(i)
|
|
# if not stcls.is_final():
|
|
# self.moves.set_costsC(beam.costs[i], beam.is_valid[i],
|
|
# state, gold)
|
|
# if follow_gold:
|
|
# for j in range(self.moves.n_moves):
|
|
# beam.is_valid[i][j] *= beam.costs[i][j] == 0
|
|
# beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
|
|
# beam.check_done(_check_final_state, NULL)
|
|
#
|
|
# def _update(self, Doc doc, g_hist, p_hist, loss):
|
|
# pred = StateClass(doc)
|
|
# gold = StateClass(doc)
|
|
# for g_move, p_move in zip(g_hist, p_hist):
|
|
# self.model(pred_eg)
|
|
# self.model(gold_eg)
|
|
#
|
|
# margin = pred_eg.scores[p_move] - gold_eg.scores[g_move] + 1
|
|
# if margin > 0:
|
|
# gold_eg.losses[g_move] = margin
|
|
# self.model.update(gold_eg)
|
|
# pred_eg.losses[p_move] = -margin
|
|
# self.model.update(pred_eg.guess)
|
|
# self.c.moves[g_move].do(gold)
|
|
# self.c.moves[p_move].do(pred)
|
|
#
|
|
#
|
|
#
|