mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
607 lines
17 KiB
Plaintext
607 lines
17 KiB
Plaintext
//- 💫 DOCS > API > DOC
|
||
|
||
include ../../_includes/_mixins
|
||
|
||
p A container for accessing linguistic annotations.
|
||
|
||
p
|
||
| A #[code Doc] is a sequence of #[+api("token") #[code Token]] objects.
|
||
| Access sentences and named entities, export annotations to numpy arrays,
|
||
| losslessly serialize to compressed binary strings. The #[code Doc] object
|
||
| holds an array of #[code TokenC] structs. The Python-level #[code Token]
|
||
| and #[+api("span") #[code Span]] objects are views of this array, i.e.
|
||
| they don't own the data themselves.
|
||
|
||
+aside-code("Example").
|
||
# Construction 1
|
||
doc = nlp(u'Some text')
|
||
|
||
# Construction 2
|
||
from spacy.tokens import Doc
|
||
doc = doc = Doc(nlp.vocab, words=[u'hello', u'world', u'!'],
|
||
spaces=[True, False, False])
|
||
|
||
+h(2, "init") Doc.__init__
|
||
+tag method
|
||
|
||
p
|
||
| Construct a #[code Doc] object. The most common way to get a #[code Doc]
|
||
| object is via the #[code nlp] object.
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code vocab]
|
||
+cell #[code Vocab]
|
||
+cell A storage container for lexical types.
|
||
|
||
+row
|
||
+cell #[code words]
|
||
+cell -
|
||
+cell A list of strings to add to the container.
|
||
|
||
+row
|
||
+cell #[code spaces]
|
||
+cell -
|
||
+cell
|
||
| A list of boolean values indicating whether each word has a
|
||
| subsequent space. Must have the same length as #[code words], if
|
||
| specified. Defaults to a sequence of #[code True].
|
||
|
||
+footrow
|
||
+cell returns
|
||
+cell #[code Doc]
|
||
+cell The newly constructed object.
|
||
|
||
+h(2, "getitem") Doc.__getitem__
|
||
+tag method
|
||
|
||
p
|
||
| Get a #[+api("token") #[code Token]] object at position #[code i], where
|
||
| #[code i] is an integer. Negative indexing is supported, and follows the
|
||
| usual Python semantics, i.e. #[code doc[-2]] is #[code doc[len(doc) - 2]].
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'Give it back! He pleaded.')
|
||
assert doc[0].text == 'Give'
|
||
assert doc[-1].text == '.'
|
||
span = doc[1:1]
|
||
assert span.text == 'it back'
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code i]
|
||
+cell int
|
||
+cell The index of the token.
|
||
|
||
+footrow
|
||
+cell returns
|
||
+cell #[code Token]
|
||
+cell The token at #[code doc[i]].
|
||
|
||
p
|
||
| Get a #[+api("span") #[code Span]] object, starting at position
|
||
| #[code start] (token index) and ending at position #[code end] (token
|
||
| index).
|
||
|
||
p
|
||
| For instance, #[code doc[2:5]] produces a span consisting of tokens 2, 3
|
||
| and 4. Stepped slices (e.g. #[code doc[start : end : step]]) are not
|
||
| supported, as #[code Span] objects must be contiguous (cannot have gaps).
|
||
| You can use negative indices and open-ended ranges, which have their
|
||
| normal Python semantics.
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code start_end]
|
||
+cell tuple
|
||
+cell The slice of the document to get.
|
||
|
||
+footrow
|
||
+cell returns
|
||
+cell #[code Span]
|
||
+cell The span at #[code doc[start : end]].
|
||
|
||
+h(2, "iter") Doc.__iter__
|
||
+tag method
|
||
|
||
p
|
||
| Iterate over #[code Token] objects, from which the annotations can be
|
||
| easily accessed.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'Give it back')
|
||
assert [t.text for t in doc] == [u'Give', u'it', u'back']
|
||
|
||
p
|
||
| This is the main way of accessing #[+api("token") #[code Token]] objects,
|
||
| which are the main way annotations are accessed from Python. If
|
||
| faster-than-Python speeds are required, you can instead access the
|
||
| annotations as a numpy array, or access the underlying C data directly
|
||
| from Cython.
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+footrow
|
||
+cell yields
|
||
+cell #[code Token]
|
||
+cell A #[code Token] object.
|
||
|
||
+h(2, "len") Doc.__len__
|
||
+tag method
|
||
|
||
p Get the number of tokens in the document.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'Give it back! He pleaded.')
|
||
assert len(doc) == 7
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+footrow
|
||
+cell returns
|
||
+cell int
|
||
+cell The number of tokens in the document.
|
||
|
||
+h(2, "similarity") Doc.similarity
|
||
+tag method
|
||
+tag-model("vectors")
|
||
|
||
p
|
||
| Make a semantic similarity estimate. The default estimate is cosine
|
||
| similarity using an average of word vectors.
|
||
|
||
+aside-code("Example").
|
||
apples = nlp(u'I like apples')
|
||
oranges = nlp(u'I like oranges')
|
||
apples_oranges = apples.similarity(oranges)
|
||
oranges_apples = oranges.similarity(apples)
|
||
assert apples_oranges == oranges_apples
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code other]
|
||
+cell -
|
||
+cell
|
||
| The object to compare with. By default, accepts #[code Doc],
|
||
| #[code Span], #[code Token] and #[code Lexeme] objects.
|
||
|
||
+footrow
|
||
+cell returns
|
||
+cell float
|
||
+cell A scalar similarity score. Higher is more similar.
|
||
|
||
+h(2, "count_by") Doc.count_by
|
||
+tag method
|
||
|
||
p
|
||
| Count the frequencies of a given attribute. Produces a dict of
|
||
| #[code {attr (int): count (ints)}] frequencies, keyed by the values
|
||
| of the given attribute ID.
|
||
|
||
+aside-code("Example").
|
||
from spacy.attrs import ORTH
|
||
doc = nlp(u'apple apple orange banana')
|
||
assert doc.count_by(ORTH) == {7024L: 1, 119552L: 1, 2087L: 2}
|
||
doc.to_array([attrs.ORTH])
|
||
# array([[11880], [11880], [7561], [12800]])
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code attr_id]
|
||
+cell int
|
||
+cell The attribute ID
|
||
|
||
+footrow
|
||
+cell returns
|
||
+cell dict
|
||
+cell A dictionary mapping attributes to integer counts.
|
||
|
||
+h(2, "to_array") Doc.to_array
|
||
+tag method
|
||
|
||
p
|
||
| Export the document annotations to a numpy array of shape #[code N*M]
|
||
| where #[code N] is the length of the document and #[code M] is the number
|
||
| of attribute IDs to export. The values will be 32-bit integers.
|
||
|
||
+aside-code("Example").
|
||
from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
|
||
doc = nlp(text)
|
||
# All strings mapped to integers, for easy export to numpy
|
||
np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code attr_ids]
|
||
+cell ints
|
||
+cell A list of attribute ID ints.
|
||
|
||
+footrow
|
||
+cell returns
|
||
+cell #[code numpy.ndarray[ndim=2, dtype='int32']]
|
||
+cell
|
||
| The exported attributes as a 2D numpy array, with one row per
|
||
| token and one column per attribute.
|
||
|
||
+h(2, "from_array") Doc.from_array
|
||
+tag method
|
||
|
||
p
|
||
| Load attributes from a numpy array. Write to a #[code Doc] object, from
|
||
| an #[code (M, N)] array of attributes.
|
||
|
||
+aside-code("Example").
|
||
from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
|
||
from spacy.tokens import Doc
|
||
doc = nlp(text)
|
||
np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
|
||
doc2 = Doc(doc.vocab)
|
||
doc2.from_array([LOWER, POS, ENT_TYPE, IS_ALPHA], np_array)
|
||
assert doc.text == doc2.text
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code attrs]
|
||
+cell ints
|
||
+cell A list of attribute ID ints.
|
||
|
||
+row
|
||
+cell #[code array]
|
||
+cell #[code numpy.ndarray[ndim=2, dtype='int32']]
|
||
+cell The attribute values to load.
|
||
|
||
+footrow
|
||
+cell returns
|
||
+cell #[code Doc]
|
||
+cell Itself.
|
||
|
||
+h(2, "to_disk") Doc.to_disk
|
||
+tag method
|
||
+tag-new(2)
|
||
|
||
p Save the current state to a directory.
|
||
|
||
+aside-code("Example").
|
||
doc.to_disk('/path/to/doc')
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code path]
|
||
+cell unicode or #[code Path]
|
||
+cell
|
||
| A path to a directory, which will be created if it doesn't exist.
|
||
| Paths may be either strings or #[code Path]-like objects.
|
||
|
||
+h(2, "from_disk") Doc.from_disk
|
||
+tag method
|
||
+tag-new(2)
|
||
|
||
p Loads state from a directory. Modifies the object in place and returns it.
|
||
|
||
+aside-code("Example").
|
||
from spacy.tokens import Doc
|
||
from spacy.vocab import Vocab
|
||
doc = Doc(Vocab()).from_disk('/path/to/doc')
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code path]
|
||
+cell unicode or #[code Path]
|
||
+cell
|
||
| A path to a directory. Paths may be either strings or
|
||
| #[code Path]-like objects.
|
||
|
||
+footrow
|
||
+cell returns
|
||
+cell #[code Doc]
|
||
+cell The modified #[code Doc] object.
|
||
|
||
+h(2, "to_bytes") Doc.to_bytes
|
||
+tag method
|
||
|
||
p Serialize, i.e. export the document contents to a binary string.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'Give it back! He pleaded.')
|
||
doc_bytes = doc.to_bytes()
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+footrow
|
||
+cell returns
|
||
+cell bytes
|
||
+cell
|
||
| A losslessly serialized copy of the #[code Doc], including all
|
||
| annotations.
|
||
|
||
+h(2, "from_bytes") Doc.from_bytes
|
||
+tag method
|
||
|
||
p Deserialize, i.e. import the document contents from a binary string.
|
||
|
||
+aside-code("Example").
|
||
from spacy.tokens import Doc
|
||
text = u'Give it back! He pleaded.'
|
||
doc = nlp(text)
|
||
bytes = doc.to_bytes()
|
||
doc2 = Doc(doc.vocab).from_bytes(bytes)
|
||
assert doc.text == doc2.text
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code data]
|
||
+cell bytes
|
||
+cell The string to load from.
|
||
|
||
+footrow
|
||
+cell returns
|
||
+cell #[code Doc]
|
||
+cell The #[code Doc] object.
|
||
|
||
+h(2, "merge") Doc.merge
|
||
+tag method
|
||
|
||
p
|
||
| Retokenize the document, such that the span at
|
||
| #[code doc.text[start_idx : end_idx]] is merged into a single token. If
|
||
| #[code start_idx] and #[end_idx] do not mark start and end token
|
||
| boundaries, the document remains unchanged.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'Los Angeles start.')
|
||
doc.merge(0, len('Los Angeles'), 'NNP', 'Los Angeles', 'GPE')
|
||
assert [t.text for t in doc] == [u'Los Angeles', u'start', u'.']
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code start_idx]
|
||
+cell int
|
||
+cell The character index of the start of the slice to merge.
|
||
|
||
+row
|
||
+cell #[code end_idx]
|
||
+cell int
|
||
+cell The character index after the end of the slice to merge.
|
||
|
||
+row
|
||
+cell #[code **attributes]
|
||
+cell -
|
||
+cell
|
||
| Attributes to assign to the merged token. By default,
|
||
| attributes are inherited from the syntactic root token of
|
||
| the span.
|
||
|
||
+footrow
|
||
+cell returns
|
||
+cell #[code Token]
|
||
+cell
|
||
| The newly merged token, or #[code None] if the start and end
|
||
| indices did not fall at token boundaries
|
||
|
||
+h(2, "print_tree") Doc.print_tree
|
||
+tag method
|
||
+tag-model("parse")
|
||
|
||
p
|
||
| Returns the parse trees in JSON (dict) format. Especially useful for
|
||
| web applications.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp('Alice ate the pizza.')
|
||
trees = doc.print_tree()
|
||
# {'modifiers': [
|
||
# {'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'},
|
||
# {'modifiers': [{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'},
|
||
# {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}
|
||
# ], 'NE': '', 'word': 'ate', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'eat'}
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code light]
|
||
+cell bool
|
||
+cell Don't include lemmas or entities.
|
||
|
||
+row
|
||
+cell #[code flat]
|
||
+cell bool
|
||
+cell Don't include arcs or modifiers.
|
||
|
||
+footrow
|
||
+cell returns
|
||
+cell dict
|
||
+cell Parse tree as dict.
|
||
|
||
+h(2, "ents") Doc.ents
|
||
+tag property
|
||
+tag-model("NER")
|
||
|
||
p
|
||
| Iterate over the entities in the document. Yields named-entity
|
||
| #[code Span] objects, if the entity recognizer has been applied to the
|
||
| document.
|
||
|
||
+aside-code("Example").
|
||
tokens = nlp(u'Mr. Best flew to New York on Saturday morning.')
|
||
ents = list(tokens.ents)
|
||
assert ents[0].label == 346
|
||
assert ents[0].label_ == 'PERSON'
|
||
assert ents[0].text == 'Mr. Best'
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+footrow
|
||
+cell yields
|
||
+cell #[code Span]
|
||
+cell Entities in the document.
|
||
|
||
+h(2, "noun_chunks") Doc.noun_chunks
|
||
+tag property
|
||
+tag-model("parse")
|
||
|
||
p
|
||
| Iterate over the base noun phrases in the document. Yields base
|
||
| noun-phrase #[code Span] objects, if the document has been syntactically
|
||
| parsed. A base noun phrase, or "NP chunk", is a noun phrase that does not
|
||
| permit other NPs to be nested within it – so no NP-level coordination, no
|
||
| prepositional phrases, and no relative clauses.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'A phrase with another phrase occurs.')
|
||
chunks = list(doc.noun_chunks)
|
||
assert chunks[0].text == "A phrase"
|
||
assert chunks[1].text == "another phrase"
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+footrow
|
||
+cell yields
|
||
+cell #[code Span]
|
||
+cell Noun chunks in the document.
|
||
|
||
+h(2, "sents") Doc.sents
|
||
+tag property
|
||
+tag-model("parse")
|
||
|
||
p
|
||
| Iterate over the sentences in the document. Sentence spans have no label.
|
||
| To improve accuracy on informal texts, spaCy calculates sentence boundaries
|
||
| from the syntactic dependency parse. If the parser is disabled,
|
||
| the #[code sents] iterator will be unavailable.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u"This is a sentence. Here's another...")
|
||
sents = list(doc.sents)
|
||
assert len(sents) == 2
|
||
assert [s.root.text for s in sents] == ["is", "'s"]
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+footrow
|
||
+cell yields
|
||
+cell #[code Span]
|
||
+cell Sentences in the document.
|
||
|
||
+h(2, "has_vector") Doc.has_vector
|
||
+tag property
|
||
+tag-model("vectors")
|
||
|
||
p
|
||
| A boolean value indicating whether a word vector is associated with the
|
||
| object.
|
||
|
||
+aside-code("Example").
|
||
doc = nlp(u'I like apples')
|
||
assert doc.has_vector
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+footrow
|
||
+cell returns
|
||
+cell bool
|
||
+cell Whether the document has a vector data attached.
|
||
|
||
+h(2, "vector") Doc.vector
|
||
+tag property
|
||
+tag-model("vectors")
|
||
|
||
p
|
||
| A real-valued meaning representation. Defaults to an average of the
|
||
| token vectors.
|
||
|
||
+aside-code("Example").
|
||
apples = nlp(u'I like apples')
|
||
assert doc.vector.dtype == 'float32'
|
||
assert doc.vector.shape == (300,)
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+footrow
|
||
+cell returns
|
||
+cell #[code numpy.ndarray[ndim=1, dtype='float32']]
|
||
+cell A 1D numpy array representing the document's semantics.
|
||
|
||
+h(2, "vector_norm") Doc.vector_norm
|
||
+tag property
|
||
+tag-model("vectors")
|
||
|
||
p
|
||
| The L2 norm of the document's vector representation.
|
||
|
||
+aside-code("Example").
|
||
doc1 = nlp(u'I like apples')
|
||
doc2 = nlp(u'I like oranges')
|
||
doc1.vector_norm # 4.54232424414368
|
||
doc2.vector_norm # 3.304373298575751
|
||
assert doc1.vector_norm != doc2.vector_norm
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+footrow
|
||
+cell returns
|
||
+cell float
|
||
+cell The L2 norm of the vector representation.
|
||
|
||
+h(2, "attributes") Attributes
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code text]
|
||
+cell unicode
|
||
+cell A unicode representation of the document text.
|
||
|
||
+row
|
||
+cell #[code text_with_ws]
|
||
+cell unicode
|
||
+cell
|
||
| An alias of #[code Doc.text], provided for duck-type compatibility
|
||
| with #[code Span] and #[code Token].
|
||
|
||
+row
|
||
+cell #[code mem]
|
||
+cell #[code Pool]
|
||
+cell The document's local memory heap, for all C data it owns.
|
||
|
||
+row
|
||
+cell #[code vocab]
|
||
+cell #[code Vocab]
|
||
+cell The store of lexical types.
|
||
|
||
+row
|
||
+cell #[code tensor]
|
||
+cell object
|
||
+cell Container for dense vector representations.
|
||
|
||
+row
|
||
+cell #[code user_data]
|
||
+cell -
|
||
+cell A generic storage area, for user custom data.
|
||
|
||
+row
|
||
+cell #[code is_tagged]
|
||
+cell bool
|
||
+cell
|
||
| A flag indicating that the document has been part-of-speech
|
||
| tagged.
|
||
|
||
+row
|
||
+cell #[code is_parsed]
|
||
+cell bool
|
||
+cell A flag indicating that the document has been syntactically parsed.
|
||
|
||
+row
|
||
+cell #[code sentiment]
|
||
+cell float
|
||
+cell The document's positivity/negativity score, if available.
|
||
|
||
+row
|
||
+cell #[code user_hooks]
|
||
+cell dict
|
||
+cell
|
||
| A dictionary that allows customisation of the #[code Doc]'s
|
||
| properties.
|
||
|
||
+row
|
||
+cell #[code user_token_hooks]
|
||
+cell dict
|
||
+cell
|
||
| A dictionary that allows customisation of properties of
|
||
| #[code Token] children.
|
||
|
||
+row
|
||
+cell #[code user_span_hooks]
|
||
+cell dict
|
||
+cell
|
||
| A dictionary that allows customisation of properties of
|
||
| #[code Span] children.
|