spaCy/spacy/tests/regression/test_issue2001-2500.py
Matthew Honnibal 333b1a308b
Adapt parser and NER for transformers (#5449)
* Draft layer for BILUO actions

* Fixes to biluo layer

* WIP on BILUO layer

* Add tests for BILUO layer

* Format

* Fix transitions

* Update test

* Link in the simple_ner

* Update BILUO tagger

* Update __init__

* Import simple_ner

* Update test

* Import

* Add files

* Add config

* Fix label passing for BILUO and tagger

* Fix label handling for simple_ner component

* Update simple NER test

* Update config

* Hack train script

* Update BILUO layer

* Fix SimpleNER component

* Update train_from_config

* Add biluo_to_iob helper

* Add IOB layer

* Add IOBTagger model

* Update biluo layer

* Update SimpleNER tagger

* Update BILUO

* Read random seed in train-from-config

* Update use of normal_init

* Fix normalization of gradient in SimpleNER

* Update IOBTagger

* Remove print

* Tweak masking in BILUO

* Add dropout in SimpleNER

* Update thinc

* Tidy up simple_ner

* Fix biluo model

* Unhack train-from-config

* Update setup.cfg and requirements

* Add tb_framework.py for parser model

* Try to avoid memory leak in BILUO

* Move ParserModel into spacy.ml, avoid need for subclass.

* Use updated parser model

* Remove incorrect call to model.initializre in PrecomputableAffine

* Update parser model

* Avoid divide by zero in tagger

* Add extra dropout layer in tagger

* Refine minibatch_by_words function to avoid oom

* Fix parser model after refactor

* Try to avoid div-by-zero in SimpleNER

* Fix infinite loop in minibatch_by_words

* Use SequenceCategoricalCrossentropy in Tagger

* Fix parser model when hidden layer

* Remove extra dropout from tagger

* Add extra nan check in tagger

* Fix thinc version

* Update tests and imports

* Fix test

* Update test

* Update tests

* Fix tests

* Fix test

Co-authored-by: Ines Montani <ines@ines.io>
2020-05-18 22:23:33 +02:00

143 lines
4.7 KiB
Python

import pytest
import numpy
from spacy.tokens import Doc
from spacy.matcher import Matcher
from spacy.displacy import render
from spacy.gold import iob_to_biluo
from spacy.lang.it import Italian
from spacy.lang.en import English
from ..util import add_vecs_to_vocab, get_doc
@pytest.mark.xfail
def test_issue2070():
"""Test that checks that a dot followed by a quote is handled
appropriately.
"""
# Problem: The dot is now properly split off, but the prefix/suffix rules
# are not applied again afterwards. This means that the quote will still be
# attached to the remaining token.
nlp = English()
doc = nlp('First sentence."A quoted sentence" he said ...')
assert len(doc) == 11
def test_issue2179():
"""Test that spurious 'extra_labels' aren't created when initializing NER."""
nlp = Italian()
ner = nlp.create_pipe("ner")
ner.add_label("CITIZENSHIP")
nlp.add_pipe(ner)
nlp.begin_training()
nlp2 = Italian()
nlp2.add_pipe(nlp2.create_pipe("ner"))
assert len(nlp2.get_pipe("ner").labels) == 0
model = nlp2.get_pipe("ner").model
model.attrs["resize_output"](model, nlp.get_pipe("ner").moves.n_moves)
nlp2.from_bytes(nlp.to_bytes())
assert "extra_labels" not in nlp2.get_pipe("ner").cfg
assert nlp2.get_pipe("ner").labels == ("CITIZENSHIP",)
def test_issue2203(en_vocab):
"""Test that lemmas are set correctly in doc.from_array."""
words = ["I", "'ll", "survive"]
tags = ["PRP", "MD", "VB"]
lemmas = ["-PRON-", "will", "survive"]
tag_ids = [en_vocab.strings.add(tag) for tag in tags]
lemma_ids = [en_vocab.strings.add(lemma) for lemma in lemmas]
doc = Doc(en_vocab, words=words)
# Work around lemma corruption problem and set lemmas after tags
doc.from_array("TAG", numpy.array(tag_ids, dtype="uint64"))
doc.from_array("LEMMA", numpy.array(lemma_ids, dtype="uint64"))
assert [t.tag_ for t in doc] == tags
assert [t.lemma_ for t in doc] == lemmas
# We need to serialize both tag and lemma, since this is what causes the bug
doc_array = doc.to_array(["TAG", "LEMMA"])
new_doc = Doc(doc.vocab, words=words).from_array(["TAG", "LEMMA"], doc_array)
assert [t.tag_ for t in new_doc] == tags
assert [t.lemma_ for t in new_doc] == lemmas
def test_issue2219(en_vocab):
vectors = [("a", [1, 2, 3]), ("letter", [4, 5, 6])]
add_vecs_to_vocab(en_vocab, vectors)
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(en_vocab, words=[word1, word2])
assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0])
def test_issue2361(de_tokenizer):
chars = ("&lt;", "&gt;", "&amp;", "&quot;")
doc = de_tokenizer('< > & " ')
doc.is_parsed = True
doc.is_tagged = True
html = render(doc)
for char in chars:
assert char in html
def test_issue2385():
"""Test that IOB tags are correctly converted to BILUO tags."""
# fix bug in labels with a 'b' character
tags1 = ("B-BRAWLER", "I-BRAWLER", "I-BRAWLER")
assert iob_to_biluo(tags1) == ["B-BRAWLER", "I-BRAWLER", "L-BRAWLER"]
# maintain support for iob1 format
tags2 = ("I-ORG", "I-ORG", "B-ORG")
assert iob_to_biluo(tags2) == ["B-ORG", "L-ORG", "U-ORG"]
# maintain support for iob2 format
tags3 = ("B-PERSON", "I-PERSON", "B-PERSON")
assert iob_to_biluo(tags3) == ["B-PERSON", "L-PERSON", "U-PERSON"]
@pytest.mark.parametrize(
"tags",
[
("B-ORG", "L-ORG"),
("B-PERSON", "I-PERSON", "L-PERSON"),
("U-BRAWLER", "U-BRAWLER"),
],
)
def test_issue2385_biluo(tags):
"""Test that BILUO-compatible tags aren't modified."""
assert iob_to_biluo(tags) == list(tags)
def test_issue2396(en_vocab):
words = ["She", "created", "a", "test", "for", "spacy"]
heads = [1, 0, 1, -2, -1, -1]
matrix = numpy.array(
[
[0, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 2, 3, 3, 3],
[1, 1, 3, 3, 3, 3],
[1, 1, 3, 3, 4, 4],
[1, 1, 3, 3, 4, 5],
],
dtype=numpy.int32,
)
doc = get_doc(en_vocab, words=words, heads=heads)
span = doc[:]
assert (doc.get_lca_matrix() == matrix).all()
assert (span.get_lca_matrix() == matrix).all()
def test_issue2464(en_vocab):
"""Test problem with successive ?. This is the same bug, so putting it here."""
matcher = Matcher(en_vocab)
doc = Doc(en_vocab, words=["a", "b"])
matcher.add("4", [[{"OP": "?"}, {"OP": "?"}]])
matches = matcher(doc)
assert len(matches) == 3
def test_issue2482():
"""Test we can serialize and deserialize a blank NER or parser model."""
nlp = Italian()
nlp.add_pipe(nlp.create_pipe("ner"))
b = nlp.to_bytes()
Italian().from_bytes(b)