spaCy/spacy/tokens/doc.pyx
2016-11-01 13:27:32 +01:00

789 lines
30 KiB
Cython
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

cimport cython
from libc.string cimport memcpy, memset
from libc.stdint cimport uint32_t
from libc.math cimport sqrt
import numpy
import numpy.linalg
import struct
cimport numpy as np
import six
import warnings
from ..lexeme cimport Lexeme
from ..lexeme cimport EMPTY_LEXEME
from ..typedefs cimport attr_t, flags_t
from ..attrs cimport attr_id_t
from ..attrs cimport ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX, LENGTH, CLUSTER
from ..attrs cimport POS, LEMMA, TAG, DEP, HEAD, SPACY, ENT_IOB, ENT_TYPE
from ..parts_of_speech cimport CONJ, PUNCT, NOUN
from ..parts_of_speech cimport univ_pos_t
from ..lexeme cimport Lexeme
from .span cimport Span
from .token cimport Token
from ..serialize.bits cimport BitArray
from ..util import normalize_slice
from ..syntax.iterators import CHUNKERS
DEF PADDING = 5
cdef int bounds_check(int i, int length, int padding) except -1:
if (i + padding) < 0:
raise IndexError
if (i - padding) >= length:
raise IndexError
cdef attr_t get_token_attr(const TokenC* token, attr_id_t feat_name) nogil:
if feat_name == LEMMA:
return token.lemma
elif feat_name == POS:
return token.pos
elif feat_name == TAG:
return token.tag
elif feat_name == DEP:
return token.dep
elif feat_name == HEAD:
return token.head
elif feat_name == SPACY:
return token.spacy
elif feat_name == ENT_IOB:
return token.ent_iob
elif feat_name == ENT_TYPE:
return token.ent_type
else:
return Lexeme.get_struct_attr(token.lex, feat_name)
cdef class Doc:
"""
A sequence of `Token` objects. Access sentences and named entities,
export annotations to numpy arrays, losslessly serialize to compressed
binary strings.
Aside: Internals
The `Doc` object holds an array of `TokenC` structs.
The Python-level `Token` and `Span` objects are views of this
array, i.e. they don't own the data themselves.
Code: Construction 1
doc = nlp.tokenizer(u'Some text')
Code: Construction 2
doc = Doc(nlp.vocab, orths_and_spaces=[(u'Some', True), (u'text', True)])
"""
def __init__(self, Vocab vocab, words=None, spaces=None, orths_and_spaces=None):
'''
Create a Doc object.
Aside: Implementation
This method of constructing a `Doc` object is usually only used
for deserialization. Standard usage is to construct the document via
a call to the language object.
Arguments:
vocab:
A Vocabulary object, which must match any models you want to
use (e.g. tokenizer, parser, entity recognizer).
words:
A list of unicode strings to add to the document as words. If None,
defaults to empty list.
spaces:
A list of boolean values, of the same length as words. True
means that the word is followed by a space, False means it is not.
If None, defaults to [True]*len(words)
'''
self.vocab = vocab
size = 20
self.mem = Pool()
# Guarantee self.lex[i-x], for any i >= 0 and x < padding is in bounds
# However, we need to remember the true starting places, so that we can
# realloc.
data_start = <TokenC*>self.mem.alloc(size + (PADDING*2), sizeof(TokenC))
cdef int i
for i in range(size + (PADDING*2)):
data_start[i].lex = &EMPTY_LEXEME
data_start[i].l_edge = i
data_start[i].r_edge = i
self.c = data_start + PADDING
self.max_length = size
self.length = 0
self.is_tagged = False
self.is_parsed = False
self.sentiment = 0.0
self.user_hooks = {}
self.user_token_hooks = {}
self.user_span_hooks = {}
self.tensor = numpy.zeros((0,), dtype='float32')
self.user_data = {}
self._py_tokens = []
self._vector = None
self.noun_chunks_iterator = CHUNKERS.get(self.vocab.lang)
cdef unicode orth
cdef bint has_space
if orths_and_spaces is None and words is not None:
if spaces is None:
spaces = [True] * len(words)
elif len(spaces) != len(words):
raise ValueError(
"Arguments 'words' and 'spaces' should be sequences of the "
"same length, or 'spaces' should be left default at None. "
"spaces should be a sequence of booleans, with True meaning "
"that the word owns a ' ' character following it.")
orths_and_spaces = zip(words, spaces)
if orths_and_spaces is not None:
for orth_space in orths_and_spaces:
if isinstance(orth_space, unicode):
orth = orth_space
has_space = True
elif isinstance(orth_space, bytes):
raise ValueError(
"orths_and_spaces expects either List(unicode) or "
"List((unicode, bool)). Got bytes instance: %s" % (str(orth_space)))
else:
orth, has_space = orth_space
# Note that we pass self.mem here --- we have ownership, if LexemeC
# must be created.
self.push_back(
<const LexemeC*>self.vocab.get(self.mem, orth), has_space)
def __getitem__(self, object i):
'''
doc[i]
Get the Token object at position i, where i is an integer.
Negative indexing is supported, and follows the usual Python
semantics, i.e. doc[-2] is doc[len(doc) - 2].
doc[start : end]]
Get a `Span` object, starting at position `start`
and ending at position `end`, where `start` and
`end` are token indices. For instance,
`doc[2:5]` produces a span consisting of
tokens 2, 3 and 4. Stepped slices (e.g. `doc[start : end : step]`)
are not supported, as `Span` objects must be contiguous (cannot have gaps).
You can use negative indices and open-ended ranges, which have their
normal Python semantics.
'''
if isinstance(i, slice):
start, stop = normalize_slice(len(self), i.start, i.stop, i.step)
return Span(self, start, stop, label=0)
if i < 0:
i = self.length + i
bounds_check(i, self.length, PADDING)
if self._py_tokens[i] is not None:
return self._py_tokens[i]
else:
return Token.cinit(self.vocab, &self.c[i], i, self)
def __iter__(self):
'''
for token in doc
Iterate over `Token` objects, from which the annotations can
be easily accessed. This is the main way of accessing Token
objects, which are the main way annotations are accessed from
Python. If faster-than-Python speeds are required, you can
instead access the annotations as a numpy array, or access the
underlying C data directly from Cython.
'''
cdef int i
for i in range(self.length):
if self._py_tokens[i] is not None:
yield self._py_tokens[i]
else:
yield Token.cinit(self.vocab, &self.c[i], i, self)
def __len__(self):
'''
len(doc)
The number of tokens in the document.
'''
return self.length
def __unicode__(self):
return u''.join([t.text_with_ws for t in self])
def __bytes__(self):
return u''.join([t.text_with_ws for t in self]).encode('utf-8')
def __str__(self):
if six.PY3:
return self.__unicode__()
return self.__bytes__()
def __repr__(self):
return self.__str__()
def similarity(self, other):
'''Make a semantic similarity estimate. The default estimate is cosine
similarity using an average of word vectors.
Arguments:
other (object): The object to compare with. By default, accepts Doc,
Span, Token and Lexeme objects.
Return:
score (float): A scalar similarity score. Higher is more similar.
'''
if 'similarity' in self.user_hooks:
return self.user_hooks['similarity'](self, other)
if self.vector_norm == 0 or other.vector_norm == 0:
return 0.0
return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm)
property has_vector:
'''
A boolean value indicating whether a word vector is associated with the object.
'''
def __get__(self):
if 'has_vector' in self.user_hooks:
return self.user_hooks['has_vector'](self)
return any(token.has_vector for token in self)
property vector:
'''
A real-valued meaning representation. Defaults to an average of the token vectors.
Type: numpy.ndarray[ndim=1, dtype='float32']
'''
def __get__(self):
if 'vector' in self.user_hooks:
return self.user_hooks['vector'](self)
if self._vector is None:
if len(self):
self._vector = sum(t.vector for t in self) / len(self)
else:
return numpy.zeros((self.vocab.vectors_length,), dtype='float32')
return self._vector
def __set__(self, value):
self._vector = value
property vector_norm:
def __get__(self):
if 'vector_norm' in self.user_hooks:
return self.user_hooks['vector_norm'](self)
cdef float value
cdef double norm = 0
if self._vector_norm is None:
norm = 0.0
for value in self.vector:
norm += value * value
self._vector_norm = sqrt(norm) if norm != 0 else 0
return self._vector_norm
def __set__(self, value):
self._vector_norm = value
@property
def string(self):
return self.text
property text:
'''A unicode representation of the document text.'''
def __get__(self):
return u''.join(t.text_with_ws for t in self)
property text_with_ws:
'''An alias of Doc.text, provided for duck-type compatibility with Span and Token.'''
def __get__(self):
return self.text
property ents:
'''
Yields named-entity `Span` objects, if the entity recognizer
has been applied to the document. Iterate over the span to get
individual Token objects, or access the label:
Example:
from spacy.en import English
nlp = English()
tokens = nlp(u'Mr. Best flew to New York on Saturday morning.')
ents = list(tokens.ents)
assert ents[0].label == 346
assert ents[0].label_ == 'PERSON'
assert ents[0].orth_ == 'Best'
assert ents[0].text == 'Mr. Best'
'''
def __get__(self):
cdef int i
cdef const TokenC* token
cdef int start = -1
cdef int label = 0
output = []
for i in range(self.length):
token = &self.c[i]
if token.ent_iob == 1:
assert start != -1
elif token.ent_iob == 2 or token.ent_iob == 0:
if start != -1:
output.append(Span(self, start, i, label=label))
start = -1
label = 0
elif token.ent_iob == 3:
if start != -1:
output.append(Span(self, start, i, label=label))
start = i
label = token.ent_type
if start != -1:
output.append(Span(self, start, self.length, label=label))
return tuple(output)
def __set__(self, ents):
# TODO:
# 1. Allow negative matches
# 2. Ensure pre-set NERs are not over-written during statistical prediction
# 3. Test basic data-driven ORTH gazetteer
# 4. Test more nuanced date and currency regex
cdef int i
for i in range(self.length):
self.c[i].ent_type = 0
# At this point we don't know whether the NER has run over the
# Doc. If the ent_iob is missing, leave it missing.
if self.c[i].ent_iob != 0:
self.c[i].ent_iob = 2 # Means O. Non-O are set from ents.
cdef attr_t ent_type
cdef int start, end
for ent_info in ents:
if isinstance(ent_info, Span):
ent_id = ent_info.ent_id
ent_type = ent_info.label
start = ent_info.start
end = ent_info.end
elif len(ent_info) == 3:
ent_type, start, end = ent_info
else:
ent_id, ent_type, start, end = ent_info
if ent_type is None or ent_type < 0:
# Mark as O
for i in range(start, end):
self.c[i].ent_type = 0
self.c[i].ent_iob = 2
else:
# Mark (inside) as I
for i in range(start, end):
self.c[i].ent_type = ent_type
self.c[i].ent_iob = 1
# Set start as B
self.c[start].ent_iob = 3
property noun_chunks:
'''
Yields base noun-phrase #[code Span] objects, if the document
has been syntactically parsed. A base noun phrase, or
'NP chunk', is a noun phrase that does not permit other NPs to
be nested within it so no NP-level coordination, no prepositional
phrases, and no relative clauses. For example:
'''
def __get__(self):
if not self.is_parsed:
raise ValueError(
"noun_chunks requires the dependency parse, which "
"requires data to be installed. If you haven't done so, run: "
"\npython -m spacy.%s.download all\n"
"to install the data" % self.vocab.lang)
# Accumulate the result before beginning to iterate over it. This prevents
# the tokenisation from being changed out from under us during the iteration.
# The tricky thing here is that Span accepts its tokenisation changing,
# so it's okay once we have the Span objects. See Issue #375
spans = []
for start, end, label in self.noun_chunks_iterator(self):
spans.append(Span(self, start, end, label=label))
for span in spans:
yield span
property sents:
"""
Yields sentence `Span` objects. Sentence spans have no label.
To improve accuracy on informal texts, spaCy calculates sentence
boundaries from the syntactic dependency parse. If the parser is disabled,
`sents` iterator will be unavailable.
Example:
from spacy.en import English
nlp = English()
doc = nlp("This is a sentence. Here's another...")
assert [s.root.orth_ for s in doc.sents] == ["is", "'s"]
"""
def __get__(self):
if 'sents' in self.user_hooks:
return self.user_hooks['sents'](self)
if not self.is_parsed:
raise ValueError(
"sentence boundary detection requires the dependency parse, which "
"requires data to be installed. If you haven't done so, run: "
"\npython -m spacy.%s.download all\n"
"to install the data" % self.vocab.lang)
cdef int i
start = 0
for i in range(1, self.length):
if self.c[i].sent_start:
yield Span(self, start, i)
start = i
if start != self.length:
yield Span(self, start, self.length)
cdef int push_back(self, LexemeOrToken lex_or_tok, bint has_space) except -1:
if self.length == self.max_length:
self._realloc(self.length * 2)
cdef TokenC* t = &self.c[self.length]
if LexemeOrToken is const_TokenC_ptr:
t[0] = lex_or_tok[0]
else:
t.lex = lex_or_tok
if self.length == 0:
t.idx = 0
else:
t.idx = (t-1).idx + (t-1).lex.length + (t-1).spacy
t.l_edge = self.length
t.r_edge = self.length
assert t.lex.orth != 0
t.spacy = has_space
self.length += 1
self._py_tokens.append(None)
return t.idx + t.lex.length + t.spacy
@cython.boundscheck(False)
cpdef np.ndarray to_array(self, object py_attr_ids):
"""
Given a list of M attribute IDs, export the tokens to a numpy
`ndarray` of shape (N, M), where `N` is the length
of the document. The values will be 32-bit integers.
Example:
from spacy import attrs
doc = nlp(text)
# All strings mapped to integers, for easy export to numpy
np_array = doc.to_array([attrs.LOWER, attrs.POS, attrs.ENT_TYPE, attrs.IS_ALPHA])
Arguments:
attr_ids (list[int]): A list of attribute ID ints.
Returns:
feat_array (numpy.ndarray[long, ndim=2]):
A feature matrix, with one row per word, and one column per attribute
indicated in the input attr_ids.
"""
cdef int i, j
cdef attr_id_t feature
cdef np.ndarray[attr_t, ndim=2] output
# Make an array from the attributes --- otherwise our inner loop is Python
# dict iteration.
cdef np.ndarray[attr_t, ndim=1] attr_ids = numpy.asarray(py_attr_ids, dtype=numpy.int32)
output = numpy.ndarray(shape=(self.length, len(attr_ids)), dtype=numpy.int32)
for i in range(self.length):
for j, feature in enumerate(attr_ids):
output[i, j] = get_token_attr(&self.c[i], feature)
return output
def count_by(self, attr_id_t attr_id, exclude=None, PreshCounter counts=None):
"""Produce a dict of {attribute (int): count (ints)} frequencies, keyed
by the values of the given attribute ID.
Example:
from spacy.en import English, attrs
nlp = English()
tokens = nlp(u'apple apple orange banana')
tokens.count_by(attrs.ORTH)
# {12800L: 1, 11880L: 2, 7561L: 1}
tokens.to_array([attrs.ORTH])
# array([[11880],
# [11880],
# [ 7561],
# [12800]])
Arguments:
attr_id
int
The attribute ID to key the counts.
"""
cdef int i
cdef attr_t attr
cdef size_t count
if counts is None:
counts = PreshCounter()
output_dict = True
else:
output_dict = False
# Take this check out of the loop, for a bit of extra speed
if exclude is None:
for i in range(self.length):
counts.inc(get_token_attr(&self.c[i], attr_id), 1)
else:
for i in range(self.length):
if not exclude(self[i]):
attr = get_token_attr(&self.c[i], attr_id)
counts.inc(attr, 1)
if output_dict:
return dict(counts)
def _realloc(self, new_size):
self.max_length = new_size
n = new_size + (PADDING * 2)
# What we're storing is a "padded" array. We've jumped forward PADDING
# places, and are storing the pointer to that. This way, we can access
# words out-of-bounds, and get out-of-bounds markers.
# Now that we want to realloc, we need the address of the true start,
# so we jump the pointer back PADDING places.
cdef TokenC* data_start = self.c - PADDING
data_start = <TokenC*>self.mem.realloc(data_start, n * sizeof(TokenC))
self.c = data_start + PADDING
cdef int i
for i in range(self.length, self.max_length + PADDING):
self.c[i].lex = &EMPTY_LEXEME
cdef void set_parse(self, const TokenC* parsed) nogil:
# TODO: This method is fairly misleading atm. It's used by Parser
# to actually apply the parse calculated. Need to rethink this.
# Probably we should use from_array?
self.is_parsed = True
for i in range(self.length):
self.c[i] = parsed[i]
def from_array(self, attrs, array):
'''Write to a `Doc` object, from an `(M, N)` array of attributes.
'''
cdef int i, col
cdef attr_id_t attr_id
cdef TokenC* tokens = self.c
cdef int length = len(array)
cdef attr_t[:] values
for col, attr_id in enumerate(attrs):
values = array[:, col]
if attr_id == HEAD:
for i in range(length):
tokens[i].head = values[i]
if values[i] >= 1:
tokens[i + values[i]].l_kids += 1
elif values[i] < 0:
tokens[i + values[i]].r_kids += 1
elif attr_id == TAG:
for i in range(length):
if values[i] != 0:
self.vocab.morphology.assign_tag(&tokens[i],
self.vocab.morphology.reverse_index[values[i]])
elif attr_id == POS:
for i in range(length):
tokens[i].pos = <univ_pos_t>values[i]
elif attr_id == DEP:
for i in range(length):
tokens[i].dep = values[i]
elif attr_id == ENT_IOB:
for i in range(length):
tokens[i].ent_iob = values[i]
elif attr_id == ENT_TYPE:
for i in range(length):
tokens[i].ent_type = values[i]
else:
raise ValueError("Unknown attribute ID: %d" % attr_id)
set_children_from_heads(self.c, self.length)
self.is_parsed = bool(HEAD in attrs or DEP in attrs)
self.is_tagged = bool(TAG in attrs or POS in attrs)
return self
def to_bytes(self):
'''Serialize, producing a byte string.'''
byte_string = self.vocab.serializer.pack(self)
cdef uint32_t length = len(byte_string)
return struct.pack('I', length) + byte_string
def from_bytes(self, data):
'''Deserialize, loading from bytes.'''
self.vocab.serializer.unpack_into(data[4:], self)
return self
@staticmethod
def read_bytes(file_):
'''
A static method, used to read serialized #[code Doc] objects from
a file. For example:
Example:
from spacy.tokens.doc import Doc
loc = 'test_serialize.bin'
with open(loc, 'wb') as file_:
file_.write(nlp(u'This is a document.').to_bytes())
file_.write(nlp(u'This is another.').to_bytes())
docs = []
with open(loc, 'rb') as file_:
for byte_string in Doc.read_bytes(file_):
docs.append(Doc(nlp.vocab).from_bytes(byte_string))
assert len(docs) == 2
'''
keep_reading = True
while keep_reading:
try:
n_bytes_str = file_.read(4)
if len(n_bytes_str) < 4:
break
n_bytes = struct.unpack('I', n_bytes_str)[0]
data = file_.read(n_bytes)
except StopIteration:
keep_reading = False
yield n_bytes_str + data
def merge(self, int start_idx, int end_idx, *args, **attributes):
"""Retokenize the document, such that the span at doc.text[start_idx : end_idx]
is merged into a single token. If start_idx and end_idx do not mark start
and end token boundaries, the document remains unchanged.
Arguments:
start_idx (int): The character index of the start of the slice to merge.
end_idx (int): The character index after the end of the slice to merge.
**attributes:
Attributes to assign to the merged token. By default, attributes
are inherited from the syntactic root token of the span.
Returns:
token (Token):
The newly merged token, or None if the start and end indices did
not fall at token boundaries.
"""
cdef unicode tag, lemma, ent_type
if len(args) == 3:
# TODO: Warn deprecation
tag, lemma, ent_type = args
attributes[TAG] = self.vocab.strings[tag]
attributes[LEMMA] = self.vocab.strings[lemma]
attributes[ENT_TYPE] = self.vocab.strings[ent_type]
elif args:
raise ValueError(
"Doc.merge received %d non-keyword arguments. "
"Expected either 3 arguments (deprecated), or 0 (use keyword arguments). "
"Arguments supplied:\n%s\n"
"Keyword arguments:%s\n" % (len(args), repr(args), repr(attributes)))
cdef int start = token_by_start(self.c, self.length, start_idx)
if start == -1:
return None
cdef int end = token_by_end(self.c, self.length, end_idx)
if end == -1:
return None
# Currently we have the token index, we want the range-end index
end += 1
cdef Span span = self[start:end]
tag = self.vocab.strings[attributes.get(TAG, span.root.tag)]
lemma = self.vocab.strings[attributes.get(LEMMA, span.root.lemma)]
ent_type = self.vocab.strings[attributes.get(ENT_TYPE, span.root.ent_type)]
# Get LexemeC for newly merged token
new_orth = ''.join([t.text_with_ws for t in span])
if span[-1].whitespace_:
new_orth = new_orth[:-len(span[-1].whitespace_)]
cdef const LexemeC* lex = self.vocab.get(self.mem, new_orth)
# House the new merged token where it starts
cdef TokenC* token = &self.c[start]
token.spacy = self.c[end-1].spacy
if tag in self.vocab.morphology.tag_map:
self.vocab.morphology.assign_tag(token, tag)
else:
token.tag = self.vocab.strings[tag]
token.lemma = self.vocab.strings[lemma]
if ent_type == 'O':
token.ent_iob = 2
token.ent_type = 0
else:
token.ent_iob = 3
token.ent_type = self.vocab.strings[ent_type]
# Begin by setting all the head indices to absolute token positions
# This is easier to work with for now than the offsets
# Before thinking of something simpler, beware the case where a dependency
# bridges over the entity. Here the alignment of the tokens changes.
span_root = span.root.i
token.dep = span.root.dep
# We update token.lex after keeping span root and dep, since
# setting token.lex will change span.start and span.end properties
# as it modifies the character offsets in the doc
token.lex = lex
for i in range(self.length):
self.c[i].head += i
# Set the head of the merged token, and its dep relation, from the Span
token.head = self.c[span_root].head
# Adjust deps before shrinking tokens
# Tokens which point into the merged token should now point to it
# Subtract the offset from all tokens which point to >= end
offset = (end - start) - 1
for i in range(self.length):
head_idx = self.c[i].head
if start <= head_idx < end:
self.c[i].head = start
elif head_idx >= end:
self.c[i].head -= offset
# Now compress the token array
for i in range(end, self.length):
self.c[i - offset] = self.c[i]
for i in range(self.length - offset, self.length):
memset(&self.c[i], 0, sizeof(TokenC))
self.c[i].lex = &EMPTY_LEXEME
self.length -= offset
for i in range(self.length):
# ...And, set heads back to a relative position
self.c[i].head -= i
# Set the left/right children, left/right edges
set_children_from_heads(self.c, self.length)
# Clear the cached Python objects
self._py_tokens = [None] * self.length
# Return the merged Python object
return self[start]
cdef int token_by_start(const TokenC* tokens, int length, int start_char) except -2:
cdef int i
for i in range(length):
if tokens[i].idx == start_char:
return i
else:
return -1
cdef int token_by_end(const TokenC* tokens, int length, int end_char) except -2:
cdef int i
for i in range(length):
if tokens[i].idx + tokens[i].lex.length == end_char:
return i
else:
return -1
cdef int set_children_from_heads(TokenC* tokens, int length) except -1:
cdef TokenC* head
cdef TokenC* child
cdef int i
# Set number of left/right children to 0. We'll increment it in the loops.
for i in range(length):
tokens[i].l_kids = 0
tokens[i].r_kids = 0
tokens[i].l_edge = i
tokens[i].r_edge = i
# Set left edges
for i in range(length):
child = &tokens[i]
head = &tokens[i + child.head]
if child < head:
if child.l_edge < head.l_edge:
head.l_edge = child.l_edge
head.l_kids += 1
# Set right edges --- same as above, but iterate in reverse
for i in range(length-1, -1, -1):
child = &tokens[i]
head = &tokens[i + child.head]
if child > head:
if child.r_edge > head.r_edge:
head.r_edge = child.r_edge
head.r_kids += 1
# Set sentence starts
for i in range(length):
if tokens[i].head == 0 and tokens[i].dep != 0:
tokens[tokens[i].l_edge].sent_start = True