mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			534 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			534 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
# cython: infer_types=True
 | 
						|
# cython: profile=True
 | 
						|
# cython: cdivision=True
 | 
						|
# cython: boundscheck=False
 | 
						|
# coding: utf-8
 | 
						|
from __future__ import unicode_literals, print_function
 | 
						|
 | 
						|
from collections import Counter
 | 
						|
import ujson
 | 
						|
import contextlib
 | 
						|
 | 
						|
from libc.math cimport exp
 | 
						|
cimport cython
 | 
						|
cimport cython.parallel
 | 
						|
import cytoolz
 | 
						|
import dill
 | 
						|
 | 
						|
import numpy.random
 | 
						|
cimport numpy as np
 | 
						|
 | 
						|
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
 | 
						|
from cpython.exc cimport PyErr_CheckSignals
 | 
						|
from libc.stdint cimport uint32_t, uint64_t
 | 
						|
from libc.string cimport memset, memcpy
 | 
						|
from libc.stdlib cimport malloc, calloc, free
 | 
						|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
 | 
						|
from thinc.linear.avgtron cimport AveragedPerceptron
 | 
						|
from thinc.linalg cimport VecVec
 | 
						|
from thinc.structs cimport SparseArrayC, FeatureC, ExampleC
 | 
						|
from thinc.extra.eg cimport Example
 | 
						|
from cymem.cymem cimport Pool, Address
 | 
						|
from murmurhash.mrmr cimport hash64
 | 
						|
from preshed.maps cimport MapStruct
 | 
						|
from preshed.maps cimport map_get
 | 
						|
 | 
						|
from thinc.api import layerize, chain
 | 
						|
from thinc.neural import Model, Affine, ELU, ReLu, Maxout
 | 
						|
from thinc.neural.ops import NumpyOps
 | 
						|
 | 
						|
from .. import util
 | 
						|
from ..util import get_async, get_cuda_stream
 | 
						|
from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts
 | 
						|
from .._ml import Tok2Vec, doc2feats
 | 
						|
 | 
						|
from . import _parse_features
 | 
						|
from ._parse_features cimport CONTEXT_SIZE
 | 
						|
from ._parse_features cimport fill_context
 | 
						|
from .stateclass cimport StateClass
 | 
						|
from ._state cimport StateC
 | 
						|
from .nonproj import PseudoProjectivity
 | 
						|
from .transition_system import OracleError
 | 
						|
from .transition_system cimport TransitionSystem, Transition
 | 
						|
from ..structs cimport TokenC
 | 
						|
from ..tokens.doc cimport Doc
 | 
						|
from ..strings cimport StringStore
 | 
						|
from ..gold cimport GoldParse
 | 
						|
from ..attrs cimport TAG, DEP
 | 
						|
 | 
						|
 | 
						|
def get_templates(*args, **kwargs):
 | 
						|
    return []
 | 
						|
 | 
						|
USE_FTRL = True
 | 
						|
DEBUG = False
 | 
						|
def set_debug(val):
 | 
						|
    global DEBUG
 | 
						|
    DEBUG = val
 | 
						|
 | 
						|
 | 
						|
cdef class precompute_hiddens:
 | 
						|
    '''Allow a model to be "primed" by pre-computing input features in bulk.
 | 
						|
 | 
						|
    This is used for the parser, where we want to take a batch of documents,
 | 
						|
    and compute vectors for each (token, position) pair. These vectors can then
 | 
						|
    be reused, especially for beam-search.
 | 
						|
 | 
						|
    Let's say we're using 12 features for each state, e.g. word at start of
 | 
						|
    buffer, three words on stack, their children, etc. In the normal arc-eager
 | 
						|
    system, a document of length N is processed in 2*N states. This means we'll
 | 
						|
    create 2*N*12 feature vectors --- but if we pre-compute, we only need
 | 
						|
    N*12 vector computations. The saving for beam-search is much better:
 | 
						|
    if we have a beam of k, we'll normally make 2*N*12*K computations --
 | 
						|
    so we can save the factor k. This also gives a nice CPU/GPU division:
 | 
						|
    we can do all our hard maths up front, packed into large multiplications,
 | 
						|
    and do the hard-to-program parsing on the CPU.
 | 
						|
    '''
 | 
						|
    cdef int nF, nO, nP
 | 
						|
    cdef bint _is_synchronized
 | 
						|
    cdef public object ops
 | 
						|
    cdef np.ndarray _features
 | 
						|
    cdef np.ndarray _cached
 | 
						|
    cdef object _cuda_stream
 | 
						|
    cdef object _bp_hiddens
 | 
						|
 | 
						|
    def __init__(self, batch_size, tokvecs, lower_model, cuda_stream=None, drop=0.):
 | 
						|
        gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=drop)
 | 
						|
        cdef np.ndarray cached
 | 
						|
        if not isinstance(gpu_cached, numpy.ndarray):
 | 
						|
            # Note the passing of cuda_stream here: it lets
 | 
						|
            # cupy make the copy asynchronously.
 | 
						|
            # We then have to block before first use.
 | 
						|
            cached = gpu_cached.get(stream=cuda_stream)
 | 
						|
        else:
 | 
						|
            cached = gpu_cached
 | 
						|
        self.nF = cached.shape[1]
 | 
						|
        self.nO = cached.shape[2]
 | 
						|
        self.nP = cached.shape[3]
 | 
						|
        self.ops = lower_model.ops
 | 
						|
        self._features = numpy.zeros((batch_size, self.nO, self.nP), dtype='f')
 | 
						|
        self._is_synchronized = False
 | 
						|
        self._cuda_stream = cuda_stream
 | 
						|
        self._cached = cached
 | 
						|
        self._bp_hiddens = bp_features
 | 
						|
 | 
						|
    def __call__(self, X):
 | 
						|
        return self.begin_update(X)[0]
 | 
						|
 | 
						|
    def begin_update(self, token_ids, drop=0.):
 | 
						|
        self._features.fill(0)
 | 
						|
        if not self._is_synchronized \
 | 
						|
        and self._cuda_stream is not None:
 | 
						|
            self._cuda_stream.synchronize()
 | 
						|
            self._is_synchronized = True
 | 
						|
        # This is tricky, but (assuming GPU available);
 | 
						|
        # - Input to forward on CPU
 | 
						|
        # - Output from forward on CPU
 | 
						|
        # - Input to backward on GPU!
 | 
						|
        # - Output from backward on GPU
 | 
						|
        cdef np.ndarray state_vector = self._features[:len(token_ids)]
 | 
						|
        cdef np.ndarray hiddens = self._cached
 | 
						|
        bp_hiddens = self._bp_hiddens
 | 
						|
 | 
						|
        cdef int[:, ::1] ids = token_ids
 | 
						|
        self._sum_features(<float*>state_vector.data,
 | 
						|
            <float*>hiddens.data, &ids[0,0],
 | 
						|
            token_ids.shape[0], self.nF, self.nO*self.nP)
 | 
						|
 | 
						|
        output, bp_output = self._apply_nonlinearity(state_vector)
 | 
						|
 | 
						|
        def backward(d_output, sgd=None):
 | 
						|
            # This will usually be on GPU
 | 
						|
            if isinstance(d_output, numpy.ndarray):
 | 
						|
                d_output = self.ops.xp.array(d_output)
 | 
						|
            d_state_vector = bp_output(d_output, sgd)
 | 
						|
            d_tokens = bp_hiddens((d_state_vector, token_ids), sgd)
 | 
						|
            return d_tokens
 | 
						|
        return output, backward
 | 
						|
 | 
						|
    def _apply_nonlinearity(self, X):
 | 
						|
        if self.nP < 2:
 | 
						|
            return X.reshape(X.shape[:2]), lambda dX, sgd=None: dX.reshape(X.shape)
 | 
						|
        best, which = self.ops.maxout(X)
 | 
						|
        return best, lambda dX, sgd=None: self.ops.backprop_maxout(dX, which, self.nP)
 | 
						|
 | 
						|
    cdef void _sum_features(self, float* output,
 | 
						|
            const float* cached, const int* token_ids, int B, int F, int O) nogil:
 | 
						|
        cdef int idx, b, f, i
 | 
						|
        cdef const float* feature
 | 
						|
        for b in range(B):
 | 
						|
            for f in range(F):
 | 
						|
                if token_ids[f] < 0:
 | 
						|
                    continue
 | 
						|
                idx = token_ids[f] * F * O + f*O
 | 
						|
                feature = &cached[idx]
 | 
						|
                for i in range(O):
 | 
						|
                    output[i] += feature[i]
 | 
						|
            output += O
 | 
						|
            token_ids += F
 | 
						|
 | 
						|
 | 
						|
cdef void cpu_log_loss(float* d_scores,
 | 
						|
        const float* costs, const int* is_valid, const float* scores,
 | 
						|
        int O) nogil:
 | 
						|
    """Do multi-label log loss"""
 | 
						|
    cdef double max_, gmax, Z, gZ
 | 
						|
    best = arg_max_if_gold(scores, costs, is_valid, O)
 | 
						|
    guess = arg_max_if_valid(scores, is_valid, O)
 | 
						|
    Z = 1e-10
 | 
						|
    gZ = 1e-10
 | 
						|
    max_ = scores[guess]
 | 
						|
    gmax = scores[best]
 | 
						|
    for i in range(O):
 | 
						|
        if is_valid[i]:
 | 
						|
            Z += exp(scores[i] - max_)
 | 
						|
            if costs[i] <= costs[best]:
 | 
						|
                gZ += exp(scores[i] - gmax)
 | 
						|
    for i in range(O):
 | 
						|
        if not is_valid[i]:
 | 
						|
            d_scores[i] = 0.
 | 
						|
        elif costs[i] <= costs[best]:
 | 
						|
            d_scores[i] = (exp(scores[i]-max_) / Z) - (exp(scores[i]-gmax)/gZ)
 | 
						|
        else:
 | 
						|
            d_scores[i] = exp(scores[i]-max_) / Z
 | 
						|
 | 
						|
 | 
						|
cdef void cpu_regression_loss(float* d_scores,
 | 
						|
        const float* costs, const int* is_valid, const float* scores,
 | 
						|
        int O) nogil:
 | 
						|
    cdef float eps = 2.
 | 
						|
    best = arg_max_if_gold(scores, costs, is_valid, O)
 | 
						|
    for i in range(O):
 | 
						|
        if not is_valid[i]:
 | 
						|
            d_scores[i] = 0.
 | 
						|
        elif scores[i] < scores[best]:
 | 
						|
            d_scores[i] = 0.
 | 
						|
        else:
 | 
						|
            # I doubt this is correct?
 | 
						|
            # Looking for something like Huber loss
 | 
						|
            diff = scores[i] - -costs[i]
 | 
						|
            if diff > eps:
 | 
						|
                d_scores[i] = eps
 | 
						|
            elif diff < -eps:
 | 
						|
                d_scores[i] = -eps
 | 
						|
            else:
 | 
						|
                d_scores[i] = diff
 | 
						|
 | 
						|
 | 
						|
cdef class Parser:
 | 
						|
    """
 | 
						|
    Base class of the DependencyParser and EntityRecognizer.
 | 
						|
    """
 | 
						|
    @classmethod
 | 
						|
    def Model(cls, nr_class, token_vector_width=128, hidden_width=128, **cfg):
 | 
						|
        token_vector_width = util.env_opt('token_vector_width', token_vector_width)
 | 
						|
        hidden_width = util.env_opt('hidden_width', hidden_width)
 | 
						|
        maxout_pieces = util.env_opt('parser_maxout_pieces', 1)
 | 
						|
        lower = PrecomputableMaxouts(hidden_width,
 | 
						|
                    nF=cls.nr_feature,
 | 
						|
                    nI=token_vector_width,
 | 
						|
                    pieces=maxout_pieces)
 | 
						|
 | 
						|
        with Model.use_device('cpu'):
 | 
						|
            upper = chain(
 | 
						|
                        Maxout(hidden_width),
 | 
						|
                        zero_init(Affine(nr_class))
 | 
						|
                    )
 | 
						|
        # TODO: This is an unfortunate hack atm!
 | 
						|
        # Used to set input dimensions in network.
 | 
						|
        lower.begin_training(lower.ops.allocate((500, token_vector_width)))
 | 
						|
        upper.begin_training(upper.ops.allocate((500, hidden_width)))
 | 
						|
        return lower, upper
 | 
						|
 | 
						|
    def __init__(self, Vocab vocab, moves=True, model=True, **cfg):
 | 
						|
        """
 | 
						|
        Create a Parser.
 | 
						|
 | 
						|
        Arguments:
 | 
						|
            vocab (Vocab):
 | 
						|
                The vocabulary object. Must be shared with documents to be processed.
 | 
						|
                The value is set to the .vocab attribute.
 | 
						|
            moves (TransitionSystem):
 | 
						|
                Defines how the parse-state is created, updated and evaluated.
 | 
						|
                The value is set to the .moves attribute unless True (default),
 | 
						|
                in which case a new instance is created with Parser.Moves().
 | 
						|
            model (object):
 | 
						|
                Defines how the parse-state is created, updated and evaluated.
 | 
						|
                The value is set to the .model attribute unless True (default),
 | 
						|
                in which case a new instance is created with Parser.Model().
 | 
						|
            **cfg:
 | 
						|
                Arbitrary configuration parameters. Set to the .cfg attribute
 | 
						|
        """
 | 
						|
        self.vocab = vocab
 | 
						|
        if moves is True:
 | 
						|
            self.moves = self.TransitionSystem(self.vocab.strings, {})
 | 
						|
        else:
 | 
						|
            self.moves = moves
 | 
						|
        self.cfg = cfg
 | 
						|
        if 'actions' in self.cfg:
 | 
						|
            for action, labels in self.cfg.get('actions', {}).items():
 | 
						|
                for label in labels:
 | 
						|
                    self.moves.add_action(action, label)
 | 
						|
        self.model = model
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        return (Parser, (self.vocab, self.moves, self.model), None, None)
 | 
						|
 | 
						|
    def __call__(self, Doc tokens, state=None):
 | 
						|
        """
 | 
						|
        Apply the parser or entity recognizer, setting the annotations onto the Doc object.
 | 
						|
 | 
						|
        Arguments:
 | 
						|
            doc (Doc): The document to be processed.
 | 
						|
        Returns:
 | 
						|
            None
 | 
						|
        """
 | 
						|
        self.parse_batch([tokens], state['tokvecs'])
 | 
						|
        return state
 | 
						|
 | 
						|
    def pipe(self, stream, int batch_size=1000, int n_threads=2):
 | 
						|
        """
 | 
						|
        Process a stream of documents.
 | 
						|
 | 
						|
        Arguments:
 | 
						|
            stream: The sequence of documents to process.
 | 
						|
            batch_size (int):
 | 
						|
                The number of documents to accumulate into a working set.
 | 
						|
            n_threads (int):
 | 
						|
                The number of threads with which to work on the buffer in parallel.
 | 
						|
        Yields (Doc): Documents, in order.
 | 
						|
        """
 | 
						|
        cdef StateClass parse_state
 | 
						|
        cdef Doc doc
 | 
						|
        queue = []
 | 
						|
        for batch in cytoolz.partition_all(batch_size, stream):
 | 
						|
            batch = list(batch)
 | 
						|
            docs, states = zip(*batch)
 | 
						|
            parse_states = self.parse_batch(docs, states[0]['tokvecs'])
 | 
						|
            self.set_annotations(docs, parse_states)
 | 
						|
            yield from zip(docs, states)
 | 
						|
 | 
						|
    def parse_batch(self, docs, tokvecs):
 | 
						|
        cuda_stream = get_cuda_stream()
 | 
						|
 | 
						|
        states = self.moves.init_batch(docs)
 | 
						|
        state2vec, vec2scores = self.get_batch_model(len(states), tokvecs,
 | 
						|
                                                     cuda_stream, 0.0)
 | 
						|
 | 
						|
        todo = [st for st in states if not st.is_final()]
 | 
						|
        while todo:
 | 
						|
            token_ids = self.get_token_ids(states)
 | 
						|
            vectors = state2vec(token_ids)
 | 
						|
            scores = vec2scores(vectors)
 | 
						|
            self.transition_batch(states, scores)
 | 
						|
            todo = [st for st in states if not st.is_final()]
 | 
						|
        return states
 | 
						|
 | 
						|
    def update(self, docs, golds, state=None, drop=0., sgd=None):
 | 
						|
        assert state is not None
 | 
						|
        assert 'tokvecs' in state
 | 
						|
        assert 'bp_tokvecs' in state
 | 
						|
        if isinstance(docs, Doc) and isinstance(golds, GoldParse):
 | 
						|
            docs = [docs]
 | 
						|
            golds = [golds]
 | 
						|
 | 
						|
        cuda_stream = get_cuda_stream()
 | 
						|
        for gold in golds:
 | 
						|
            self.moves.preprocess_gold(gold)
 | 
						|
 | 
						|
        tokvecs = state['tokvecs']
 | 
						|
        bp_tokvecs = state['bp_tokvecs']
 | 
						|
 | 
						|
        states = self.moves.init_batch(docs)
 | 
						|
        state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream,
 | 
						|
                                                      drop)
 | 
						|
 | 
						|
        todo = [(s, g) for s, g in zip(states, golds) if not s.is_final()]
 | 
						|
 | 
						|
        backprops = []
 | 
						|
        cdef float loss = 0.
 | 
						|
        cutoff = max(1, len(todo) // 10)
 | 
						|
        while len(todo) >= cutoff:
 | 
						|
            states, golds = zip(*todo)
 | 
						|
 | 
						|
            token_ids = self.get_token_ids(states)
 | 
						|
            vector, bp_vector = state2vec.begin_update(token_ids, drop=drop)
 | 
						|
            scores, bp_scores = vec2scores.begin_update(vector, drop=drop)
 | 
						|
 | 
						|
            d_scores = self.get_batch_loss(states, golds, scores)
 | 
						|
            d_vector = bp_scores(d_scores, sgd=sgd)
 | 
						|
            loss += (d_scores**2).sum()
 | 
						|
 | 
						|
            if not isinstance(tokvecs, state2vec.ops.xp.ndarray):
 | 
						|
                backprops.append((token_ids, d_vector, bp_vector))
 | 
						|
            else:
 | 
						|
                # Move token_ids and d_vector to CPU, asynchronously
 | 
						|
                backprops.append((
 | 
						|
                    get_async(cuda_stream, token_ids),
 | 
						|
                    get_async(cuda_stream, d_vector),
 | 
						|
                    bp_vector
 | 
						|
                ))
 | 
						|
            self.transition_batch(states, scores)
 | 
						|
            todo = [st for st in todo if not st[0].is_final()]
 | 
						|
        # Tells CUDA to block, so our async copies complete.
 | 
						|
        if cuda_stream is not None:
 | 
						|
            cuda_stream.synchronize()
 | 
						|
        d_tokvecs = state2vec.ops.allocate(tokvecs.shape)
 | 
						|
        xp = state2vec.ops.xp # Handle for numpy/cupy
 | 
						|
        for token_ids, d_vector, bp_vector in backprops:
 | 
						|
            d_state_features = bp_vector(d_vector, sgd=sgd)
 | 
						|
            active_feats = token_ids * (token_ids >= 0)
 | 
						|
            active_feats = active_feats.reshape((token_ids.shape[0], token_ids.shape[1], 1))
 | 
						|
            if hasattr(xp, 'scatter_add'):
 | 
						|
                xp.scatter_add(d_tokvecs,
 | 
						|
                    token_ids, d_state_features * active_feats)
 | 
						|
            else:
 | 
						|
                xp.add.at(d_tokvecs,
 | 
						|
                    token_ids, d_state_features * active_feats)
 | 
						|
        bp_tokvecs(d_tokvecs, sgd)
 | 
						|
        state['parser_loss'] = loss
 | 
						|
        return state
 | 
						|
 | 
						|
    def get_batch_model(self, batch_size, tokvecs, stream, dropout):
 | 
						|
        lower, upper = self.model
 | 
						|
        state2vec = precompute_hiddens(batch_size, tokvecs,
 | 
						|
                        lower, stream, drop=dropout)
 | 
						|
        return state2vec, upper
 | 
						|
 | 
						|
    nr_feature = 13
 | 
						|
 | 
						|
    def get_token_ids(self, states):
 | 
						|
        cdef StateClass state
 | 
						|
        cdef int n_tokens = self.nr_feature
 | 
						|
        ids = numpy.zeros((len(states), n_tokens), dtype='i', order='C')
 | 
						|
        for i, state in enumerate(states):
 | 
						|
            state.set_context_tokens(ids[i])
 | 
						|
        return ids
 | 
						|
 | 
						|
    def transition_batch(self, states, float[:, ::1] scores):
 | 
						|
        cdef StateClass state
 | 
						|
        cdef int[500] is_valid # TODO: Unhack
 | 
						|
        cdef float* c_scores = &scores[0, 0]
 | 
						|
        for state in states:
 | 
						|
            self.moves.set_valid(is_valid, state.c)
 | 
						|
            guess = arg_max_if_valid(c_scores, is_valid, scores.shape[1])
 | 
						|
            action = self.moves.c[guess]
 | 
						|
            action.do(state.c, action.label)
 | 
						|
            c_scores += scores.shape[1]
 | 
						|
 | 
						|
    def get_batch_loss(self, states, golds, float[:, ::1] scores):
 | 
						|
        cdef StateClass state
 | 
						|
        cdef GoldParse gold
 | 
						|
        cdef Pool mem = Pool()
 | 
						|
        cdef int i
 | 
						|
        is_valid = <int*>mem.alloc(self.moves.n_moves, sizeof(int))
 | 
						|
        costs = <float*>mem.alloc(self.moves.n_moves, sizeof(float))
 | 
						|
        cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves),
 | 
						|
                                        dtype='f', order='C')
 | 
						|
        c_d_scores = <float*>d_scores.data
 | 
						|
        for i, (state, gold) in enumerate(zip(states, golds)):
 | 
						|
            memset(is_valid, 0, self.moves.n_moves * sizeof(int))
 | 
						|
            memset(costs, 0, self.moves.n_moves * sizeof(float))
 | 
						|
            self.moves.set_costs(is_valid, costs, state, gold)
 | 
						|
            cpu_log_loss(c_d_scores,
 | 
						|
                costs, is_valid, &scores[i, 0], d_scores.shape[1])
 | 
						|
            c_d_scores += d_scores.shape[1]
 | 
						|
        return d_scores
 | 
						|
 | 
						|
    def set_annotations(self, docs, states):
 | 
						|
        cdef StateClass state
 | 
						|
        cdef Doc doc
 | 
						|
        for state, doc in zip(states, docs):
 | 
						|
            self.moves.finalize_state(state.c)
 | 
						|
            for i in range(doc.length):
 | 
						|
                doc.c[i] = state.c._sent[i]
 | 
						|
            self.moves.finalize_doc(doc)
 | 
						|
 | 
						|
    def add_label(self, label):
 | 
						|
        # Doesn't set label into serializer -- subclasses override it to do that.
 | 
						|
        for action in self.moves.action_types:
 | 
						|
            added = self.moves.add_action(action, label)
 | 
						|
            if added:
 | 
						|
                # Important that the labels be stored as a list! We need the
 | 
						|
                # order, or the model goes out of synch
 | 
						|
                self.cfg.setdefault('extra_labels', []).append(label)
 | 
						|
 | 
						|
    def begin_training(self, gold_tuples, **cfg):
 | 
						|
        if 'model' in cfg:
 | 
						|
            self.model = cfg['model']
 | 
						|
        actions = self.moves.get_actions(gold_parses=gold_tuples)
 | 
						|
        for action, labels in actions.items():
 | 
						|
            for label in labels:
 | 
						|
                self.moves.add_action(action, label)
 | 
						|
        if self.model is True:
 | 
						|
            self.model = self.Model(self.moves.n_moves, **cfg)
 | 
						|
 | 
						|
    def use_params(self, params):
 | 
						|
        # Can't decorate cdef class :(. Workaround.
 | 
						|
        with self.model[0].use_params(params):
 | 
						|
            with self.model[1].use_params(params):
 | 
						|
                yield
 | 
						|
 | 
						|
    def to_disk(self, path):
 | 
						|
        path = util.ensure_path(path)
 | 
						|
        with (path / 'model.bin').open('wb') as file_:
 | 
						|
            dill.dump(self.model, file_)
 | 
						|
 | 
						|
    def from_disk(self, path):
 | 
						|
        path = util.ensure_path(path)
 | 
						|
        with (path / 'model.bin').open('wb') as file_:
 | 
						|
            self.model = dill.load(file_)
 | 
						|
 | 
						|
    def to_bytes(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    def from_bytes(self, data):
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
class ParserStateError(ValueError):
 | 
						|
    def __init__(self, doc):
 | 
						|
        ValueError.__init__(self,
 | 
						|
            "Error analysing doc -- no valid actions available. This should "
 | 
						|
            "never happen, so please report the error on the issue tracker. "
 | 
						|
            "Here's the thread to do so --- reopen it if it's closed:\n"
 | 
						|
            "https://github.com/spacy-io/spaCy/issues/429\n"
 | 
						|
            "Please include the text that the parser failed on, which is:\n"
 | 
						|
            "%s" % repr(doc.text))
 | 
						|
 | 
						|
 | 
						|
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, const int* is_valid, int n) nogil:
 | 
						|
    # Find minimum cost
 | 
						|
    cdef float cost = 1
 | 
						|
    for i in range(n):
 | 
						|
        if is_valid[i] and costs[i] < cost:
 | 
						|
            cost = costs[i]
 | 
						|
    # Now find best-scoring with that cost
 | 
						|
    cdef int best = -1
 | 
						|
    for i in range(n):
 | 
						|
        if costs[i] <= cost and is_valid[i]:
 | 
						|
            if best == -1 or scores[i] > scores[best]:
 | 
						|
                best = i
 | 
						|
    return best
 | 
						|
 | 
						|
 | 
						|
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil:
 | 
						|
    cdef int best = -1
 | 
						|
    for i in range(n):
 | 
						|
        if is_valid[i] >= 1:
 | 
						|
            if best == -1 or scores[i] > scores[best]:
 | 
						|
                best = i
 | 
						|
    return best
 | 
						|
 | 
						|
 | 
						|
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
 | 
						|
                       int nr_class) except -1:
 | 
						|
    cdef weight_t score = 0
 | 
						|
    cdef int mode = -1
 | 
						|
    cdef int i
 | 
						|
    for i in range(nr_class):
 | 
						|
        if actions[i].move == move and (mode == -1 or scores[i] >= score):
 | 
						|
            mode = i
 | 
						|
            score = scores[i]
 | 
						|
    return mode
 |