mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-23 07:44:12 +03:00
a183db3cef
* Try to fix doc.copy * Set dev version * Make vocab always own lexemes * Change version * Add SpanGroups.copy method * Fix set_annotations during Parser.update * Fix dict proxy copy * Upd version * Fix copying SpanGroups * Fix set_annotations in parser.update * Fix parser set_annotations during update * Revert "Fix parser set_annotations during update" This reverts commiteb138c89ed
. * Revert "Fix set_annotations in parser.update" This reverts commitc6df0eafd0
. * Fix set_annotations during parser update * Inc version * Handle final states in get_oracle_sequence * Inc version * Try to fix parser training * Inc version * Fix * Inc version * Fix parser oracle * Inc version * Inc version * Fix transition has_gold * Inc version * Try to use real histories, not oracle * Inc version * Upd parser * Inc version * WIP on rewrite parser * WIP refactor parser * New progress on parser model refactor * Prepare to remove parser_model.pyx * Convert parser from cdef class * Delete spacy.ml.parser_model * Delete _precomputable_affine module * Wire up tb_framework to new parser model * Wire up parser model * Uncython ner.pyx and dep_parser.pyx * Uncython * Work on parser model * Support unseen_classes in parser model * Support unseen classes in parser * Cleaner handling of unseen classes * Work through tests * Keep working through errors * Keep working through errors * Work on parser. 15 tests failing * Xfail beam stuff. 9 failures * More xfail. 7 failures * Xfail. 6 failures * cleanup * formatting * fixes * pass nO through * Fix empty doc in update * Hackishly fix resizing. 3 failures * Fix redundant test. 2 failures * Add reference version * black formatting * Get tests passing with reference implementation * Fix missing prints * Add missing file * Improve indexing on reference implementation * Get non-reference forward func working * Start rigging beam back up * removing redundant tests, cf #8106 * black formatting * temporarily xfailing issue 4314 * make flake8 happy again * mypy fixes * ensure labels are added upon predict * cleanup remnants from merge conflicts * Improve unseen label masking Two changes to speed up masking by ~10%: - Use a bool array rather than an array of float32. - Let the mask indicate whether a label was seen, rather than unseen. The mask is most frequently used to index scores for seen labels. However, since the mask marked unseen labels, this required computing an intermittent flipped mask. * Write moves costs directly into numpy array (#10163) This avoids elementwise indexing and the allocation of an additional array. Gives a ~15% speed improvement when using batch_by_sequence with size 32. * Temporarily disable ner and rehearse tests Until rehearse is implemented again in the refactored parser. * Fix loss serialization issue (#10600) * Fix loss serialization issue Serialization of a model fails with: TypeError: array(738.3855, dtype=float32) is not JSON serializable Fix this using float conversion. * Disable CI steps that require spacy.TransitionBasedParser.v2 After finishing the refactor, TransitionBasedParser.v2 should be provided for backwards compat. * Add back support for beam parsing to the refactored parser (#10633) * Add back support for beam parsing Beam parsing was already implemented as part of the `BeamBatch` class. This change makes its counterpart `GreedyBatch`. Both classes are hooked up in `TransitionModel`, selecting `GreedyBatch` when the beam size is one, or `BeamBatch` otherwise. * Use kwarg for beam width Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Avoid implicit default for beam_width and beam_density * Parser.{beam,greedy}_parse: ensure labels are added * Remove 'deprecated' comments Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Parser `StateC` optimizations (#10746) * `StateC`: Optimizations Avoid GIL acquisition in `__init__` Increase default buffer capacities on init Reduce C++ exception overhead * Fix typo * Replace `set::count` with `set::find` * Add exception attribute to c'tor * Remove unused import * Use a power-of-two value for initial capacity Use default-insert to init `_heads` and `_unshiftable` * Merge `cdef` variable declarations and assignments * Vectorize `example.get_aligned_parses` (#10789) * `example`: Vectorize `get_aligned_parse` Rename `numpy` import * Convert aligned array to lists before returning * Revert import renaming * Elide slice arguments when selecting the entire range * Tagger/morphologizer alignment performance optimizations (#10798) * `example`: Unwrap `numpy` scalar arrays before passing them to `StringStore.__getitem__` * `AlignmentArray`: Use native list as staging buffer for offset calculation * `example`: Vectorize `get_aligned` * Hoist inner functions out of `get_aligned` * Replace inline `if..else` clause in assignment statement * `AlignmentArray`: Use raw indexing into offset and data `numpy` arrays * `example`: Replace array unique value check with `groupby` * `example`: Correctly exclude tokens with no alignment in `_get_aligned_vectorized` Simplify `_get_aligned_non_vectorized` * `util`: Update `all_equal` docstring * Explicitly use `int32_t*` * Restore C CPU inference in the refactored parser (#10747) * Bring back the C parsing model The C parsing model is used for CPU inference and is still faster for CPU inference than the forward pass of the Thinc model. * Use C sgemm provided by the Ops implementation * Make tb_framework module Cython, merge in C forward implementation * TransitionModel: raise in backprop returned from forward_cpu * Re-enable greedy parse test * Return transition scores when forward_cpu is used * Apply suggestions from code review Import `Model` from `thinc.api` Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Use relative imports in tb_framework * Don't assume a default for beam_width * We don't have a direct dependency on BLIS anymore * Rename forwards to _forward_{fallback,greedy_cpu} * Require thinc >=8.1.0,<8.2.0 * tb_framework: clean up imports * Fix return type of _get_seen_mask * Move up _forward_greedy_cpu * Style fixes. * Lower thinc lowerbound to 8.1.0.dev0 * Formatting fix Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Reimplement parser rehearsal function (#10878) * Reimplement parser rehearsal function Before the parser refactor, rehearsal was driven by a loop in the `rehearse` method itself. For each parsing step, the loops would: 1. Get the predictions of the teacher. 2. Get the predictions and backprop function of the student. 3. Compute the loss and backprop into the student. 4. Move the teacher and student forward with the predictions of the student. In the refactored parser, we cannot perform search stepwise rehearsal anymore, since the model now predicts all parsing steps at once. Therefore, rehearsal is performed in the following steps: 1. Get the predictions of all parsing steps from the student, along with its backprop function. 2. Get the predictions from the teacher, but use the predictions of the student to advance the parser while doing so. 3. Compute the loss and backprop into the student. To support the second step a new method, `advance_with_actions` is added to `GreedyBatch`, which performs the provided parsing steps. * tb_framework: wrap upper_W and upper_b in Linear Thinc's Optimizer cannot handle resizing of existing parameters. Until it does, we work around this by wrapping the weights/biases of the upper layer of the parser model in Linear. When the upper layer is resized, we copy over the existing parameters into a new Linear instance. This does not trigger an error in Optimizer, because it sees the resized layer as a new set of parameters. * Add test for TransitionSystem.apply_actions * Better FIXME marker Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> * Fixes from Madeesh * Apply suggestions from Sofie Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Remove useless assignment Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Rename some identifiers in the parser refactor (#10935) * Rename _parseC to _parse_batch * tb_framework: prefix many auxiliary functions with underscore To clearly state the intent that they are private. * Rename `lower` to `hidden`, `upper` to `output` * Parser slow test fixup We don't have TransitionBasedParser.{v1,v2} until we bring it back as a legacy option. * Remove last vestiges of PrecomputableAffine This does not exist anymore as a separate layer. * ner: re-enable sentence boundary checks * Re-enable test that works now. * test_ner: make loss test more strict again * Remove commented line * Re-enable some more beam parser tests * Remove unused _forward_reference function * Update for CBlas changes in Thinc 8.1.0.dev2 Bump thinc dependency to 8.1.0.dev3. * Remove references to spacy.TransitionBasedParser.{v1,v2} Since they will not be offered starting with spaCy v4. * `tb_framework`: Replace references to `thinc.backends.linalg` with `CBlas` * dont use get_array_module (#11056) (#11293) Co-authored-by: kadarakos <kadar.akos@gmail.com> * Move `thinc.extra.search` to `spacy.pipeline._parser_internals` (#11317) * `search`: Move from `thinc.extra.search` Fix NPE in `Beam.__dealloc__` * `pytest`: Add support for executing Cython tests Move `search` tests from thinc and patch them to run with `pytest` * `mypy` fix * Update comment * `conftest`: Expose `register_cython_tests` * Remove unused import * Move `argmax` impls to new `_parser_utils` Cython module (#11410) * Parser does not have to be a cdef class anymore This also fixes validation of the initialization schema. * Add back spacy.TransitionBasedParser.v2 * Fix a rename that was missed in #10878. So that rehearsal tests pass. * Remove module from setup.py that got added during the merge * Bring back support for `update_with_oracle_cut_size` (#12086) * Bring back support for `update_with_oracle_cut_size` This option was available in the pre-refactor parser, but was never implemented in the refactored parser. This option cuts transition sequences that are longer than `update_with_oracle_cut` size into separate sequences that have at most `update_with_oracle_cut` transitions. The oracle (gold standard) transition sequence is used to determine the cuts and the initial states for the additional sequences. Applying this cut makes the batches more homogeneous in the transition sequence lengths, making forward passes (and as a consequence training) much faster. Training time 1000 steps on de_core_news_lg: - Before this change: 149s - After this change: 68s - Pre-refactor parser: 81s * Fix a rename that was missed in #10878. So that rehearsal tests pass. * Apply suggestions from @shadeMe * Use chained conditional * Test with update_with_oracle_cut_size={0, 1, 5, 100} And fix a git that occurs with a cut size of 1. * Fix up some merge fall out * Update parser distillation for the refactor In the old parser, we'd iterate over the transitions in the distill function and compute the loss/gradients on the go. In the refactored parser, we first let the student model parse the inputs. Then we'll let the teacher compute the transition probabilities of the states in the student's transition sequence. We can then compute the gradients of the student given the teacher. * Add back spacy.TransitionBasedParser.v1 references - Accordion in the architecture docs. - Test in test_parse, but disabled until we have a spacy-legacy release. Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: kadarakos <kadar.akos@gmail.com>
297 lines
11 KiB
Cython
297 lines
11 KiB
Cython
# cython: infer_types=True
|
|
# cython: profile=True
|
|
cimport numpy as np
|
|
import numpy
|
|
from cpython.ref cimport PyObject, Py_XDECREF
|
|
|
|
from ...typedefs cimport hash_t, class_t
|
|
from .transition_system cimport TransitionSystem, Transition
|
|
from ...errors import Errors
|
|
from .batch cimport Batch
|
|
from .search cimport Beam, MaxViolation
|
|
from .search import MaxViolation
|
|
from .stateclass cimport StateC, StateClass
|
|
|
|
|
|
# These are passed as callbacks to .search.Beam
|
|
cdef int transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1:
|
|
dest = <StateC*>_dest
|
|
src = <StateC*>_src
|
|
moves = <const Transition*>_moves
|
|
dest.clone(src)
|
|
moves[clas].do(dest, moves[clas].label)
|
|
|
|
|
|
cdef int check_final_state(void* _state, void* extra_args) except -1:
|
|
state = <StateC*>_state
|
|
return state.is_final()
|
|
|
|
|
|
cdef class BeamBatch(Batch):
|
|
cdef public TransitionSystem moves
|
|
cdef public object states
|
|
cdef public object docs
|
|
cdef public object golds
|
|
cdef public object beams
|
|
|
|
def __init__(self, TransitionSystem moves, states, golds,
|
|
int width, float density=0.):
|
|
cdef StateClass state
|
|
self.moves = moves
|
|
self.states = states
|
|
self.docs = [state.doc for state in states]
|
|
self.golds = golds
|
|
self.beams = []
|
|
cdef Beam beam
|
|
cdef StateC* st
|
|
for state in states:
|
|
beam = Beam(self.moves.n_moves, width, min_density=density)
|
|
beam.initialize(self.moves.init_beam_state,
|
|
self.moves.del_beam_state, state.c.length,
|
|
<void*>state.c._sent)
|
|
for i in range(beam.width):
|
|
st = <StateC*>beam.at(i)
|
|
st.offset = state.c.offset
|
|
beam.check_done(check_final_state, NULL)
|
|
self.beams.append(beam)
|
|
|
|
@property
|
|
def is_done(self):
|
|
return all(b.is_done for b in self.beams)
|
|
|
|
def __getitem__(self, i):
|
|
return self.beams[i]
|
|
|
|
def __len__(self):
|
|
return len(self.beams)
|
|
|
|
def get_states(self):
|
|
cdef Beam beam
|
|
cdef StateC* state
|
|
cdef StateClass stcls
|
|
states = []
|
|
for beam, doc in zip(self, self.docs):
|
|
for i in range(beam.size):
|
|
state = <StateC*>beam.at(i)
|
|
stcls = StateClass.borrow(state, doc)
|
|
states.append(stcls)
|
|
return states
|
|
|
|
def get_unfinished_states(self):
|
|
return [st for st in self.get_states() if not st.is_final()]
|
|
|
|
def advance(self, float[:, ::1] scores, follow_gold=False):
|
|
cdef Beam beam
|
|
cdef int nr_class = scores.shape[1]
|
|
cdef const float* c_scores = &scores[0, 0]
|
|
docs = self.docs
|
|
for i, beam in enumerate(self):
|
|
if not beam.is_done:
|
|
nr_state = self._set_scores(beam, c_scores, nr_class)
|
|
assert nr_state
|
|
if self.golds is not None:
|
|
self._set_costs(
|
|
beam,
|
|
docs[i],
|
|
self.golds[i],
|
|
follow_gold=follow_gold
|
|
)
|
|
c_scores += nr_state * nr_class
|
|
beam.advance(transition_state, NULL, <void*>self.moves.c)
|
|
beam.check_done(check_final_state, NULL)
|
|
|
|
cdef int _set_scores(self, Beam beam, const float* scores, int nr_class) except -1:
|
|
cdef int nr_state = 0
|
|
for i in range(beam.size):
|
|
state = <StateC*>beam.at(i)
|
|
if not state.is_final():
|
|
for j in range(nr_class):
|
|
beam.scores[i][j] = scores[nr_state * nr_class + j]
|
|
self.moves.set_valid(beam.is_valid[i], state)
|
|
nr_state += 1
|
|
else:
|
|
for j in range(beam.nr_class):
|
|
beam.scores[i][j] = 0
|
|
beam.costs[i][j] = 0
|
|
return nr_state
|
|
|
|
def _set_costs(self, Beam beam, doc, gold, int follow_gold=False):
|
|
cdef const StateC* state
|
|
for i in range(beam.size):
|
|
state = <const StateC*>beam.at(i)
|
|
if state.is_final():
|
|
for j in range(beam.nr_class):
|
|
beam.is_valid[i][j] = 0
|
|
beam.costs[i][j] = 9000
|
|
else:
|
|
self.moves.set_costs(beam.is_valid[i], beam.costs[i],
|
|
state, gold)
|
|
if follow_gold:
|
|
min_cost = 0
|
|
for j in range(beam.nr_class):
|
|
if beam.is_valid[i][j] and beam.costs[i][j] < min_cost:
|
|
min_cost = beam.costs[i][j]
|
|
for j in range(beam.nr_class):
|
|
if beam.costs[i][j] > min_cost:
|
|
beam.is_valid[i][j] = 0
|
|
|
|
|
|
def update_beam(TransitionSystem moves, states, golds, model, int width, beam_density=0.0):
|
|
cdef MaxViolation violn
|
|
pbeam = BeamBatch(moves, states, golds, width=width, density=beam_density)
|
|
gbeam = BeamBatch(moves, states, golds, width=width, density=0.0)
|
|
cdef StateClass state
|
|
beam_maps = []
|
|
backprops = []
|
|
violns = [MaxViolation() for _ in range(len(states))]
|
|
dones = [False for _ in states]
|
|
while not pbeam.is_done or not gbeam.is_done:
|
|
# The beam maps let us find the right row in the flattened scores
|
|
# array for each state. States are identified by (example id,
|
|
# history). We keep a different beam map for each step (since we'll
|
|
# have a flat scores array for each step). The beam map will let us
|
|
# take the per-state losses, and compute the gradient for each (step,
|
|
# state, class).
|
|
# Gather all states from the two beams in a list. Some stats may occur
|
|
# in both beams. To figure out which beam each state belonged to,
|
|
# we keep two lists of indices, p_indices and g_indices
|
|
states, p_indices, g_indices, beam_map = get_unique_states(pbeam, gbeam)
|
|
beam_maps.append(beam_map)
|
|
if not states:
|
|
break
|
|
# Now that we have our flat list of states, feed them through the model
|
|
scores, bp_scores = model.begin_update(states)
|
|
assert scores.size != 0
|
|
# Store the callbacks for the backward pass
|
|
backprops.append(bp_scores)
|
|
# Unpack the scores for the two beams. The indices arrays
|
|
# tell us which example and state the scores-row refers to.
|
|
# Now advance the states in the beams. The gold beam is constrained to
|
|
# to follow only gold analyses.
|
|
if not pbeam.is_done:
|
|
pbeam.advance(model.ops.as_contig(scores[p_indices]))
|
|
if not gbeam.is_done:
|
|
gbeam.advance(model.ops.as_contig(scores[g_indices]), follow_gold=True)
|
|
# Track the "maximum violation", to use in the update.
|
|
for i, violn in enumerate(violns):
|
|
if not dones[i]:
|
|
violn.check_crf(pbeam[i], gbeam[i])
|
|
if pbeam[i].is_done and gbeam[i].is_done:
|
|
dones[i] = True
|
|
histories = []
|
|
grads = []
|
|
for violn in violns:
|
|
if violn.p_hist:
|
|
histories.append(violn.p_hist + violn.g_hist)
|
|
d_loss = [d_l * violn.cost for d_l in violn.p_probs + violn.g_probs]
|
|
grads.append(d_loss)
|
|
else:
|
|
histories.append([])
|
|
grads.append([])
|
|
loss = 0.0
|
|
states_d_scores = get_gradient(moves.n_moves, beam_maps, histories, grads)
|
|
for i, (d_scores, bp_scores) in enumerate(zip(states_d_scores, backprops)):
|
|
loss += (d_scores**2).mean()
|
|
bp_scores(d_scores)
|
|
return loss
|
|
|
|
|
|
def collect_states(beams, docs):
|
|
cdef StateClass state
|
|
cdef Beam beam
|
|
states = []
|
|
for state_or_beam, doc in zip(beams, docs):
|
|
if isinstance(state_or_beam, StateClass):
|
|
states.append(state_or_beam)
|
|
else:
|
|
beam = state_or_beam
|
|
state = StateClass.borrow(<StateC*>beam.at(0), doc)
|
|
states.append(state)
|
|
return states
|
|
|
|
|
|
def get_unique_states(pbeams, gbeams):
|
|
seen = {}
|
|
states = []
|
|
p_indices = []
|
|
g_indices = []
|
|
beam_map = {}
|
|
docs = pbeams.docs
|
|
cdef Beam pbeam, gbeam
|
|
if len(pbeams) != len(gbeams):
|
|
raise ValueError(Errors.E079.format(pbeams=len(pbeams), gbeams=len(gbeams)))
|
|
for eg_id, (pbeam, gbeam, doc) in enumerate(zip(pbeams, gbeams, docs)):
|
|
if not pbeam.is_done:
|
|
for i in range(pbeam.size):
|
|
state = StateClass.borrow(<StateC*>pbeam.at(i), doc)
|
|
if not state.is_final():
|
|
key = tuple([eg_id] + pbeam.histories[i])
|
|
if key in seen:
|
|
raise ValueError(Errors.E080.format(key=key))
|
|
seen[key] = len(states)
|
|
p_indices.append(len(states))
|
|
states.append(state)
|
|
beam_map.update(seen)
|
|
if not gbeam.is_done:
|
|
for i in range(gbeam.size):
|
|
state = StateClass.borrow(<StateC*>gbeam.at(i), doc)
|
|
if not state.is_final():
|
|
key = tuple([eg_id] + gbeam.histories[i])
|
|
if key in seen:
|
|
g_indices.append(seen[key])
|
|
else:
|
|
g_indices.append(len(states))
|
|
beam_map[key] = len(states)
|
|
states.append(state)
|
|
p_indices = numpy.asarray(p_indices, dtype='i')
|
|
g_indices = numpy.asarray(g_indices, dtype='i')
|
|
return states, p_indices, g_indices, beam_map
|
|
|
|
|
|
def get_gradient(nr_class, beam_maps, histories, losses):
|
|
"""The global model assigns a loss to each parse. The beam scores
|
|
are additive, so the same gradient is applied to each action
|
|
in the history. This gives the gradient of a single *action*
|
|
for a beam state -- so we have "the gradient of loss for taking
|
|
action i given history H."
|
|
|
|
Histories: Each history is a list of actions
|
|
Each candidate has a history
|
|
Each beam has multiple candidates
|
|
Each batch has multiple beams
|
|
So history is list of lists of lists of ints
|
|
"""
|
|
grads = []
|
|
nr_steps = []
|
|
for eg_id, hists in enumerate(histories):
|
|
nr_step = 0
|
|
for loss, hist in zip(losses[eg_id], hists):
|
|
assert not numpy.isnan(loss)
|
|
if loss != 0.0:
|
|
nr_step = max(nr_step, len(hist))
|
|
nr_steps.append(nr_step)
|
|
for i in range(max(nr_steps)):
|
|
grads.append(numpy.zeros((max(beam_maps[i].values())+1, nr_class),
|
|
dtype='f'))
|
|
if len(histories) != len(losses):
|
|
raise ValueError(Errors.E081.format(n_hist=len(histories), losses=len(losses)))
|
|
for eg_id, hists in enumerate(histories):
|
|
for loss, hist in zip(losses[eg_id], hists):
|
|
assert not numpy.isnan(loss)
|
|
if loss == 0.0:
|
|
continue
|
|
key = tuple([eg_id])
|
|
# Adjust loss for length
|
|
# We need to do this because each state in a short path is scored
|
|
# multiple times, as we add in the average cost when we run out
|
|
# of actions.
|
|
avg_loss = loss / len(hist)
|
|
loss += avg_loss * (nr_steps[eg_id] - len(hist))
|
|
for step, clas in enumerate(hist):
|
|
i = beam_maps[step][key]
|
|
# In step j, at state i action clas
|
|
# resulted in loss
|
|
grads[step][i, clas] += loss
|
|
key = key + tuple([clas])
|
|
return grads
|