mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-23 07:44:12 +03:00
a183db3cef
* Try to fix doc.copy * Set dev version * Make vocab always own lexemes * Change version * Add SpanGroups.copy method * Fix set_annotations during Parser.update * Fix dict proxy copy * Upd version * Fix copying SpanGroups * Fix set_annotations in parser.update * Fix parser set_annotations during update * Revert "Fix parser set_annotations during update" This reverts commiteb138c89ed
. * Revert "Fix set_annotations in parser.update" This reverts commitc6df0eafd0
. * Fix set_annotations during parser update * Inc version * Handle final states in get_oracle_sequence * Inc version * Try to fix parser training * Inc version * Fix * Inc version * Fix parser oracle * Inc version * Inc version * Fix transition has_gold * Inc version * Try to use real histories, not oracle * Inc version * Upd parser * Inc version * WIP on rewrite parser * WIP refactor parser * New progress on parser model refactor * Prepare to remove parser_model.pyx * Convert parser from cdef class * Delete spacy.ml.parser_model * Delete _precomputable_affine module * Wire up tb_framework to new parser model * Wire up parser model * Uncython ner.pyx and dep_parser.pyx * Uncython * Work on parser model * Support unseen_classes in parser model * Support unseen classes in parser * Cleaner handling of unseen classes * Work through tests * Keep working through errors * Keep working through errors * Work on parser. 15 tests failing * Xfail beam stuff. 9 failures * More xfail. 7 failures * Xfail. 6 failures * cleanup * formatting * fixes * pass nO through * Fix empty doc in update * Hackishly fix resizing. 3 failures * Fix redundant test. 2 failures * Add reference version * black formatting * Get tests passing with reference implementation * Fix missing prints * Add missing file * Improve indexing on reference implementation * Get non-reference forward func working * Start rigging beam back up * removing redundant tests, cf #8106 * black formatting * temporarily xfailing issue 4314 * make flake8 happy again * mypy fixes * ensure labels are added upon predict * cleanup remnants from merge conflicts * Improve unseen label masking Two changes to speed up masking by ~10%: - Use a bool array rather than an array of float32. - Let the mask indicate whether a label was seen, rather than unseen. The mask is most frequently used to index scores for seen labels. However, since the mask marked unseen labels, this required computing an intermittent flipped mask. * Write moves costs directly into numpy array (#10163) This avoids elementwise indexing and the allocation of an additional array. Gives a ~15% speed improvement when using batch_by_sequence with size 32. * Temporarily disable ner and rehearse tests Until rehearse is implemented again in the refactored parser. * Fix loss serialization issue (#10600) * Fix loss serialization issue Serialization of a model fails with: TypeError: array(738.3855, dtype=float32) is not JSON serializable Fix this using float conversion. * Disable CI steps that require spacy.TransitionBasedParser.v2 After finishing the refactor, TransitionBasedParser.v2 should be provided for backwards compat. * Add back support for beam parsing to the refactored parser (#10633) * Add back support for beam parsing Beam parsing was already implemented as part of the `BeamBatch` class. This change makes its counterpart `GreedyBatch`. Both classes are hooked up in `TransitionModel`, selecting `GreedyBatch` when the beam size is one, or `BeamBatch` otherwise. * Use kwarg for beam width Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Avoid implicit default for beam_width and beam_density * Parser.{beam,greedy}_parse: ensure labels are added * Remove 'deprecated' comments Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Parser `StateC` optimizations (#10746) * `StateC`: Optimizations Avoid GIL acquisition in `__init__` Increase default buffer capacities on init Reduce C++ exception overhead * Fix typo * Replace `set::count` with `set::find` * Add exception attribute to c'tor * Remove unused import * Use a power-of-two value for initial capacity Use default-insert to init `_heads` and `_unshiftable` * Merge `cdef` variable declarations and assignments * Vectorize `example.get_aligned_parses` (#10789) * `example`: Vectorize `get_aligned_parse` Rename `numpy` import * Convert aligned array to lists before returning * Revert import renaming * Elide slice arguments when selecting the entire range * Tagger/morphologizer alignment performance optimizations (#10798) * `example`: Unwrap `numpy` scalar arrays before passing them to `StringStore.__getitem__` * `AlignmentArray`: Use native list as staging buffer for offset calculation * `example`: Vectorize `get_aligned` * Hoist inner functions out of `get_aligned` * Replace inline `if..else` clause in assignment statement * `AlignmentArray`: Use raw indexing into offset and data `numpy` arrays * `example`: Replace array unique value check with `groupby` * `example`: Correctly exclude tokens with no alignment in `_get_aligned_vectorized` Simplify `_get_aligned_non_vectorized` * `util`: Update `all_equal` docstring * Explicitly use `int32_t*` * Restore C CPU inference in the refactored parser (#10747) * Bring back the C parsing model The C parsing model is used for CPU inference and is still faster for CPU inference than the forward pass of the Thinc model. * Use C sgemm provided by the Ops implementation * Make tb_framework module Cython, merge in C forward implementation * TransitionModel: raise in backprop returned from forward_cpu * Re-enable greedy parse test * Return transition scores when forward_cpu is used * Apply suggestions from code review Import `Model` from `thinc.api` Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Use relative imports in tb_framework * Don't assume a default for beam_width * We don't have a direct dependency on BLIS anymore * Rename forwards to _forward_{fallback,greedy_cpu} * Require thinc >=8.1.0,<8.2.0 * tb_framework: clean up imports * Fix return type of _get_seen_mask * Move up _forward_greedy_cpu * Style fixes. * Lower thinc lowerbound to 8.1.0.dev0 * Formatting fix Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Reimplement parser rehearsal function (#10878) * Reimplement parser rehearsal function Before the parser refactor, rehearsal was driven by a loop in the `rehearse` method itself. For each parsing step, the loops would: 1. Get the predictions of the teacher. 2. Get the predictions and backprop function of the student. 3. Compute the loss and backprop into the student. 4. Move the teacher and student forward with the predictions of the student. In the refactored parser, we cannot perform search stepwise rehearsal anymore, since the model now predicts all parsing steps at once. Therefore, rehearsal is performed in the following steps: 1. Get the predictions of all parsing steps from the student, along with its backprop function. 2. Get the predictions from the teacher, but use the predictions of the student to advance the parser while doing so. 3. Compute the loss and backprop into the student. To support the second step a new method, `advance_with_actions` is added to `GreedyBatch`, which performs the provided parsing steps. * tb_framework: wrap upper_W and upper_b in Linear Thinc's Optimizer cannot handle resizing of existing parameters. Until it does, we work around this by wrapping the weights/biases of the upper layer of the parser model in Linear. When the upper layer is resized, we copy over the existing parameters into a new Linear instance. This does not trigger an error in Optimizer, because it sees the resized layer as a new set of parameters. * Add test for TransitionSystem.apply_actions * Better FIXME marker Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> * Fixes from Madeesh * Apply suggestions from Sofie Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Remove useless assignment Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Rename some identifiers in the parser refactor (#10935) * Rename _parseC to _parse_batch * tb_framework: prefix many auxiliary functions with underscore To clearly state the intent that they are private. * Rename `lower` to `hidden`, `upper` to `output` * Parser slow test fixup We don't have TransitionBasedParser.{v1,v2} until we bring it back as a legacy option. * Remove last vestiges of PrecomputableAffine This does not exist anymore as a separate layer. * ner: re-enable sentence boundary checks * Re-enable test that works now. * test_ner: make loss test more strict again * Remove commented line * Re-enable some more beam parser tests * Remove unused _forward_reference function * Update for CBlas changes in Thinc 8.1.0.dev2 Bump thinc dependency to 8.1.0.dev3. * Remove references to spacy.TransitionBasedParser.{v1,v2} Since they will not be offered starting with spaCy v4. * `tb_framework`: Replace references to `thinc.backends.linalg` with `CBlas` * dont use get_array_module (#11056) (#11293) Co-authored-by: kadarakos <kadar.akos@gmail.com> * Move `thinc.extra.search` to `spacy.pipeline._parser_internals` (#11317) * `search`: Move from `thinc.extra.search` Fix NPE in `Beam.__dealloc__` * `pytest`: Add support for executing Cython tests Move `search` tests from thinc and patch them to run with `pytest` * `mypy` fix * Update comment * `conftest`: Expose `register_cython_tests` * Remove unused import * Move `argmax` impls to new `_parser_utils` Cython module (#11410) * Parser does not have to be a cdef class anymore This also fixes validation of the initialization schema. * Add back spacy.TransitionBasedParser.v2 * Fix a rename that was missed in #10878. So that rehearsal tests pass. * Remove module from setup.py that got added during the merge * Bring back support for `update_with_oracle_cut_size` (#12086) * Bring back support for `update_with_oracle_cut_size` This option was available in the pre-refactor parser, but was never implemented in the refactored parser. This option cuts transition sequences that are longer than `update_with_oracle_cut` size into separate sequences that have at most `update_with_oracle_cut` transitions. The oracle (gold standard) transition sequence is used to determine the cuts and the initial states for the additional sequences. Applying this cut makes the batches more homogeneous in the transition sequence lengths, making forward passes (and as a consequence training) much faster. Training time 1000 steps on de_core_news_lg: - Before this change: 149s - After this change: 68s - Pre-refactor parser: 81s * Fix a rename that was missed in #10878. So that rehearsal tests pass. * Apply suggestions from @shadeMe * Use chained conditional * Test with update_with_oracle_cut_size={0, 1, 5, 100} And fix a git that occurs with a cut size of 1. * Fix up some merge fall out * Update parser distillation for the refactor In the old parser, we'd iterate over the transitions in the distill function and compute the loss/gradients on the go. In the refactored parser, we first let the student model parse the inputs. Then we'll let the teacher compute the transition probabilities of the states in the student's transition sequence. We can then compute the gradients of the student given the teacher. * Add back spacy.TransitionBasedParser.v1 references - Accordion in the architecture docs. - Test in test_parse, but disabled until we have a spacy-legacy release. Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: kadarakos <kadar.akos@gmail.com>
417 lines
12 KiB
Cython
417 lines
12 KiB
Cython
from cython.operator cimport dereference as deref, preincrement as incr
|
|
from libc.string cimport memcpy, memset
|
|
from libc.stdlib cimport calloc, free
|
|
from libc.stdint cimport uint32_t, uint64_t
|
|
cimport libcpp
|
|
from libcpp.unordered_map cimport unordered_map
|
|
from libcpp.vector cimport vector
|
|
from libcpp.set cimport set
|
|
from murmurhash.mrmr cimport hash64
|
|
|
|
from ...vocab cimport EMPTY_LEXEME
|
|
from ...structs cimport TokenC, SpanC
|
|
from ...lexeme cimport Lexeme
|
|
from ...attrs cimport IS_SPACE
|
|
from ...typedefs cimport attr_t
|
|
|
|
|
|
cdef inline bint is_space_token(const TokenC* token) nogil:
|
|
return Lexeme.c_check_flag(token.lex, IS_SPACE)
|
|
|
|
cdef struct ArcC:
|
|
int head
|
|
int child
|
|
attr_t label
|
|
|
|
|
|
cdef cppclass StateC:
|
|
vector[int] _heads
|
|
const TokenC* _sent
|
|
vector[int] _stack
|
|
vector[int] _rebuffer
|
|
vector[SpanC] _ents
|
|
unordered_map[int, vector[ArcC]] _left_arcs
|
|
unordered_map[int, vector[ArcC]] _right_arcs
|
|
vector[libcpp.bool] _unshiftable
|
|
vector[int] history
|
|
set[int] _sent_starts
|
|
TokenC _empty_token
|
|
int length
|
|
int offset
|
|
int _b_i
|
|
|
|
__init__(const TokenC* sent, int length) nogil except +:
|
|
this._heads.resize(length, -1)
|
|
this._unshiftable.resize(length, False)
|
|
|
|
# Reserve memory ahead of time to minimize allocations during parsing.
|
|
# The initial capacity set here ideally reflects the expected average-case/majority usage.
|
|
cdef int init_capacity = 32
|
|
this._stack.reserve(init_capacity)
|
|
this._rebuffer.reserve(init_capacity)
|
|
this._ents.reserve(init_capacity)
|
|
this._left_arcs.reserve(init_capacity)
|
|
this._right_arcs.reserve(init_capacity)
|
|
this.history.reserve(init_capacity)
|
|
|
|
this._sent = sent
|
|
this.offset = 0
|
|
this.length = length
|
|
this._b_i = 0
|
|
memset(&this._empty_token, 0, sizeof(TokenC))
|
|
this._empty_token.lex = &EMPTY_LEXEME
|
|
|
|
void set_context_tokens(int* ids, int n) nogil:
|
|
cdef int i, j
|
|
if n == 1:
|
|
if this.B(0) >= 0:
|
|
ids[0] = this.B(0)
|
|
else:
|
|
ids[0] = -1
|
|
elif n == 2:
|
|
ids[0] = this.B(0)
|
|
ids[1] = this.S(0)
|
|
elif n == 3:
|
|
if this.B(0) >= 0:
|
|
ids[0] = this.B(0)
|
|
else:
|
|
ids[0] = -1
|
|
# First word of entity, if any
|
|
if this.entity_is_open():
|
|
ids[1] = this.E(0)
|
|
else:
|
|
ids[1] = -1
|
|
# Last word of entity, if within entity
|
|
if ids[0] == -1 or ids[1] == -1:
|
|
ids[2] = -1
|
|
else:
|
|
ids[2] = ids[0] - 1
|
|
elif n == 8:
|
|
ids[0] = this.B(0)
|
|
ids[1] = this.B(1)
|
|
ids[2] = this.S(0)
|
|
ids[3] = this.S(1)
|
|
ids[4] = this.S(2)
|
|
ids[5] = this.L(this.B(0), 1)
|
|
ids[6] = this.L(this.S(0), 1)
|
|
ids[7] = this.R(this.S(0), 1)
|
|
elif n == 13:
|
|
ids[0] = this.B(0)
|
|
ids[1] = this.B(1)
|
|
ids[2] = this.S(0)
|
|
ids[3] = this.S(1)
|
|
ids[4] = this.S(2)
|
|
ids[5] = this.L(this.S(0), 1)
|
|
ids[6] = this.L(this.S(0), 2)
|
|
ids[6] = this.R(this.S(0), 1)
|
|
ids[7] = this.L(this.B(0), 1)
|
|
ids[8] = this.R(this.S(0), 2)
|
|
ids[9] = this.L(this.S(1), 1)
|
|
ids[10] = this.L(this.S(1), 2)
|
|
ids[11] = this.R(this.S(1), 1)
|
|
ids[12] = this.R(this.S(1), 2)
|
|
elif n == 6:
|
|
for i in range(6):
|
|
ids[i] = -1
|
|
if this.B(0) >= 0:
|
|
ids[0] = this.B(0)
|
|
if this.entity_is_open():
|
|
ent = this.get_ent()
|
|
j = 1
|
|
for i in range(ent.start, this.B(0)):
|
|
ids[j] = i
|
|
j += 1
|
|
if j >= 6:
|
|
break
|
|
else:
|
|
# TODO error =/
|
|
pass
|
|
for i in range(n):
|
|
if ids[i] >= 0:
|
|
ids[i] += this.offset
|
|
else:
|
|
ids[i] = -1
|
|
|
|
int S(int i) nogil const:
|
|
cdef int stack_size = this._stack.size()
|
|
if i >= stack_size or i < 0:
|
|
return -1
|
|
else:
|
|
return this._stack[stack_size - (i+1)]
|
|
|
|
int B(int i) nogil const:
|
|
cdef int buf_size = this._rebuffer.size()
|
|
if i < 0:
|
|
return -1
|
|
elif i < buf_size:
|
|
return this._rebuffer[buf_size - (i+1)]
|
|
else:
|
|
b_i = this._b_i + (i - buf_size)
|
|
if b_i >= this.length:
|
|
return -1
|
|
else:
|
|
return b_i
|
|
|
|
const TokenC* B_(int i) nogil const:
|
|
return this.safe_get(this.B(i))
|
|
|
|
const TokenC* E_(int i) nogil const:
|
|
return this.safe_get(this.E(i))
|
|
|
|
const TokenC* safe_get(int i) nogil const:
|
|
if i < 0 or i >= this.length:
|
|
return &this._empty_token
|
|
else:
|
|
return &this._sent[i]
|
|
|
|
void map_get_arcs(const unordered_map[int, vector[ArcC]] &heads_arcs, vector[ArcC]* out) nogil const:
|
|
cdef const vector[ArcC]* arcs
|
|
head_arcs_it = heads_arcs.const_begin()
|
|
while head_arcs_it != heads_arcs.const_end():
|
|
arcs = &deref(head_arcs_it).second
|
|
arcs_it = arcs.const_begin()
|
|
while arcs_it != arcs.const_end():
|
|
arc = deref(arcs_it)
|
|
if arc.head != -1 and arc.child != -1:
|
|
out.push_back(arc)
|
|
incr(arcs_it)
|
|
incr(head_arcs_it)
|
|
|
|
void get_arcs(vector[ArcC]* out) nogil const:
|
|
this.map_get_arcs(this._left_arcs, out)
|
|
this.map_get_arcs(this._right_arcs, out)
|
|
|
|
int H(int child) nogil const:
|
|
if child >= this.length or child < 0:
|
|
return -1
|
|
else:
|
|
return this._heads[child]
|
|
|
|
int E(int i) nogil const:
|
|
if this._ents.size() == 0:
|
|
return -1
|
|
else:
|
|
return this._ents.back().start
|
|
|
|
int nth_child(const unordered_map[int, vector[ArcC]]& heads_arcs, int head, int idx) nogil const:
|
|
if idx < 1:
|
|
return -1
|
|
|
|
head_arcs_it = heads_arcs.const_find(head)
|
|
if head_arcs_it == heads_arcs.const_end():
|
|
return -1
|
|
|
|
cdef const vector[ArcC]* arcs = &deref(head_arcs_it).second
|
|
|
|
# Work backwards through arcs to find the arc at the
|
|
# requested index more quickly.
|
|
cdef size_t child_index = 0
|
|
arcs_it = arcs.const_rbegin()
|
|
while arcs_it != arcs.const_rend() and child_index != idx:
|
|
arc = deref(arcs_it)
|
|
if arc.child != -1:
|
|
child_index += 1
|
|
if child_index == idx:
|
|
return arc.child
|
|
incr(arcs_it)
|
|
|
|
return -1
|
|
|
|
int L(int head, int idx) nogil const:
|
|
return this.nth_child(this._left_arcs, head, idx)
|
|
|
|
int R(int head, int idx) nogil const:
|
|
return this.nth_child(this._right_arcs, head, idx)
|
|
|
|
bint empty() nogil const:
|
|
return this._stack.size() == 0
|
|
|
|
bint eol() nogil const:
|
|
return this.buffer_length() == 0
|
|
|
|
bint is_final() nogil const:
|
|
return this.stack_depth() <= 0 and this.eol()
|
|
|
|
int cannot_sent_start(int word) nogil const:
|
|
if word < 0 or word >= this.length:
|
|
return 0
|
|
elif this._sent[word].sent_start == -1:
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
int is_sent_start(int word) nogil const:
|
|
if word < 0 or word >= this.length:
|
|
return 0
|
|
elif this._sent[word].sent_start == 1:
|
|
return 1
|
|
elif this._sent_starts.const_find(word) != this._sent_starts.const_end():
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
void set_sent_start(int word, int value) nogil:
|
|
if value >= 1:
|
|
this._sent_starts.insert(word)
|
|
|
|
bint has_head(int child) nogil const:
|
|
return this._heads[child] >= 0
|
|
|
|
int l_edge(int word) nogil const:
|
|
return word
|
|
|
|
int r_edge(int word) nogil const:
|
|
return word
|
|
|
|
int n_arcs(const unordered_map[int, vector[ArcC]] &heads_arcs, int head) nogil const:
|
|
cdef int n = 0
|
|
head_arcs_it = heads_arcs.const_find(head)
|
|
if head_arcs_it == heads_arcs.const_end():
|
|
return n
|
|
|
|
cdef const vector[ArcC]* arcs = &deref(head_arcs_it).second
|
|
arcs_it = arcs.const_begin()
|
|
while arcs_it != arcs.end():
|
|
arc = deref(arcs_it)
|
|
if arc.child != -1:
|
|
n += 1
|
|
incr(arcs_it)
|
|
|
|
return n
|
|
|
|
|
|
int n_L(int head) nogil const:
|
|
return n_arcs(this._left_arcs, head)
|
|
|
|
int n_R(int head) nogil const:
|
|
return n_arcs(this._right_arcs, head)
|
|
|
|
bint stack_is_connected() nogil const:
|
|
return False
|
|
|
|
bint entity_is_open() nogil const:
|
|
if this._ents.size() == 0:
|
|
return False
|
|
else:
|
|
return this._ents.back().end == -1
|
|
|
|
int stack_depth() nogil const:
|
|
return this._stack.size()
|
|
|
|
int buffer_length() nogil const:
|
|
return (this.length - this._b_i) + this._rebuffer.size()
|
|
|
|
void push() nogil:
|
|
b0 = this.B(0)
|
|
if this._rebuffer.size():
|
|
b0 = this._rebuffer.back()
|
|
this._rebuffer.pop_back()
|
|
else:
|
|
b0 = this._b_i
|
|
this._b_i += 1
|
|
this._stack.push_back(b0)
|
|
|
|
void pop() nogil:
|
|
this._stack.pop_back()
|
|
|
|
void force_final() nogil:
|
|
# This should only be used in desperate situations, as it may leave
|
|
# the analysis in an unexpected state.
|
|
this._stack.clear()
|
|
this._b_i = this.length
|
|
|
|
void unshift() nogil:
|
|
s0 = this._stack.back()
|
|
this._unshiftable[s0] = 1
|
|
this._rebuffer.push_back(s0)
|
|
this._stack.pop_back()
|
|
|
|
int is_unshiftable(int item) nogil const:
|
|
if item >= this._unshiftable.size():
|
|
return 0
|
|
else:
|
|
return this._unshiftable[item]
|
|
|
|
void set_reshiftable(int item) nogil:
|
|
if item < this._unshiftable.size():
|
|
this._unshiftable[item] = 0
|
|
|
|
void add_arc(int head, int child, attr_t label) nogil:
|
|
if this.has_head(child):
|
|
this.del_arc(this.H(child), child)
|
|
cdef ArcC arc
|
|
arc.head = head
|
|
arc.child = child
|
|
arc.label = label
|
|
if head > child:
|
|
this._left_arcs[arc.head].push_back(arc)
|
|
else:
|
|
this._right_arcs[arc.head].push_back(arc)
|
|
this._heads[child] = head
|
|
|
|
void map_del_arc(unordered_map[int, vector[ArcC]]* heads_arcs, int h_i, int c_i) nogil:
|
|
cdef vector[ArcC]* arcs
|
|
cdef ArcC* arc
|
|
|
|
arcs_it = heads_arcs.find(h_i)
|
|
if arcs_it == heads_arcs.end():
|
|
return
|
|
|
|
arcs = &deref(arcs_it).second
|
|
if arcs.size() == 0:
|
|
return
|
|
|
|
arc = &arcs.back()
|
|
if arc.head == h_i and arc.child == c_i:
|
|
arcs.pop_back()
|
|
else:
|
|
for i in range(arcs.size()-1):
|
|
arc = &deref(arcs)[i]
|
|
if arc.head == h_i and arc.child == c_i:
|
|
arc.head = -1
|
|
arc.child = -1
|
|
arc.label = 0
|
|
break
|
|
|
|
void del_arc(int h_i, int c_i) nogil:
|
|
if h_i > c_i:
|
|
this.map_del_arc(&this._left_arcs, h_i, c_i)
|
|
else:
|
|
this.map_del_arc(&this._right_arcs, h_i, c_i)
|
|
|
|
SpanC get_ent() nogil const:
|
|
cdef SpanC ent
|
|
if this._ents.size() == 0:
|
|
ent.start = 0
|
|
ent.end = 0
|
|
ent.label = 0
|
|
return ent
|
|
else:
|
|
return this._ents.back()
|
|
|
|
void open_ent(attr_t label) nogil:
|
|
cdef SpanC ent
|
|
ent.start = this.B(0)
|
|
ent.label = label
|
|
ent.end = -1
|
|
this._ents.push_back(ent)
|
|
|
|
void close_ent() nogil:
|
|
this._ents.back().end = this.B(0)+1
|
|
|
|
void clone(const StateC* src) nogil:
|
|
this.length = src.length
|
|
this._sent = src._sent
|
|
this._stack = src._stack
|
|
this._rebuffer = src._rebuffer
|
|
this._sent_starts = src._sent_starts
|
|
this._unshiftable = src._unshiftable
|
|
this._heads = src._heads
|
|
this._ents = src._ents
|
|
this._left_arcs = src._left_arcs
|
|
this._right_arcs = src._right_arcs
|
|
this._b_i = src._b_i
|
|
this.offset = src.offset
|
|
this._empty_token = src._empty_token
|
|
this.history = src.history
|