mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-07 15:56:32 +03:00
e27c60a702
* Improve the correctness of _parse_patch * If there are no more actions, do not attempt to make further transitions, even if not all states are final. * Assert that the number of actions for a step is the same as the number of states. * Reimplement distillation with oracle cut size The code for distillation with an oracle cut size was not reimplemented after the parser refactor. We did not notice, because we did not have tests for this functionality. This change brings back the functionality and adds this to the parser tests. * Rename states2actions to _states_to_actions for consistency * Test distillation max cuts in NER * Mark parser/NER tests as slow * Typo * Fix invariant in _states_diff_to_actions * Rename _init_batch -> _init_batch_from_teacher * Ninja edit the ninja edit * Check that we raise an exception when we pass the incorrect number or actions * Remove unnecessary get Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> * Write out condition more explicitly --------- Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
819 lines
33 KiB
Cython
819 lines
33 KiB
Cython
# cython: infer_types=True, cdivision=True, boundscheck=False, binding=True
|
|
from __future__ import print_function
|
|
from typing import Dict, Iterable, List, Optional, Tuple
|
|
from cymem.cymem cimport Pool
|
|
cimport numpy as np
|
|
from itertools import islice
|
|
from libcpp.vector cimport vector
|
|
from libc.string cimport memset, memcpy
|
|
from libc.stdlib cimport calloc, free
|
|
import random
|
|
import contextlib
|
|
|
|
import srsly
|
|
from thinc.api import get_ops, set_dropout_rate, CupyOps, NumpyOps, Optimizer
|
|
from thinc.api import chain, softmax_activation, use_ops, get_array_module
|
|
from thinc.legacy import LegacySequenceCategoricalCrossentropy
|
|
from thinc.types import Floats2d, Ints1d
|
|
import numpy.random
|
|
import numpy
|
|
import warnings
|
|
|
|
from ..ml.tb_framework import TransitionModelInputs
|
|
from ._parser_internals.stateclass cimport StateC, StateClass
|
|
from ._parser_internals.search cimport Beam
|
|
from ..tokens.doc cimport Doc
|
|
from .trainable_pipe cimport TrainablePipe
|
|
from ._parser_internals cimport _beam_utils
|
|
from ._parser_internals import _beam_utils
|
|
from ..vocab cimport Vocab
|
|
from ._parser_internals.transition_system cimport Transition, TransitionSystem
|
|
from ..typedefs cimport weight_t
|
|
|
|
from ..training import validate_examples, validate_get_examples
|
|
from ..training import validate_distillation_examples
|
|
from ..errors import Errors, Warnings
|
|
from .. import util
|
|
|
|
|
|
# TODO: Remove when we switch to Cython 3.
|
|
cdef extern from "<algorithm>" namespace "std" nogil:
|
|
bint equal[InputIt1, InputIt2](InputIt1 first1, InputIt1 last1, InputIt2 first2) except +
|
|
|
|
|
|
NUMPY_OPS = NumpyOps()
|
|
|
|
|
|
class Parser(TrainablePipe):
|
|
"""
|
|
Base class of the DependencyParser and EntityRecognizer.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
Vocab vocab,
|
|
model,
|
|
name="base_parser",
|
|
moves=None,
|
|
*,
|
|
update_with_oracle_cut_size,
|
|
min_action_freq,
|
|
learn_tokens,
|
|
beam_width=1,
|
|
beam_density=0.0,
|
|
beam_update_prob=0.0,
|
|
multitasks=tuple(),
|
|
incorrect_spans_key=None,
|
|
scorer=None,
|
|
):
|
|
"""Create a Parser.
|
|
|
|
vocab (Vocab): The vocabulary object. Must be shared with documents
|
|
to be processed. The value is set to the `.vocab` attribute.
|
|
model (Model): The model for the transition-based parser. The model needs
|
|
to have a specific substructure of named components --- see the
|
|
spacy.ml.tb_framework.TransitionModel for details.
|
|
name (str): The name of the pipeline component
|
|
moves (Optional[TransitionSystem]): This defines how the parse-state is created,
|
|
updated and evaluated. If 'moves' is None, a new instance is
|
|
created with `self.TransitionSystem()`. Defaults to `None`.
|
|
update_with_oracle_cut_size (int): During training, cut long sequences into
|
|
shorter segments by creating intermediate states based on the gold-standard
|
|
history. The model is not very sensitive to this parameter, so you usually
|
|
won't need to change it. 100 is a good default.
|
|
min_action_freq (int): The minimum frequency of labelled actions to retain.
|
|
Rarer labelled actions have their label backed-off to "dep". While this
|
|
primarily affects the label accuracy, it can also affect the attachment
|
|
structure, as the labels are used to represent the pseudo-projectivity
|
|
transformation.
|
|
learn_tokens (bool): Whether to learn to merge subtokens that are split
|
|
relative to the gold standard. Experimental.
|
|
beam_width (int): The number of candidate analyses to maintain.
|
|
beam_density (float): The minimum ratio between the scores of the first and
|
|
last candidates in the beam. This allows the parser to avoid exploring
|
|
candidates that are too far behind. This is mostly intended to improve
|
|
efficiency, but it can also improve accuracy as deeper search is not
|
|
always better.
|
|
beam_update_prob (float): The chance of making a beam update, instead of a
|
|
greedy update. Greedy updates are an approximation for the beam updates,
|
|
and are faster to compute.
|
|
multitasks: additional multi-tasking components. Experimental.
|
|
incorrect_spans_key (Optional[str]): Identifies spans that are known
|
|
to be incorrect entity annotations. The incorrect entity annotations
|
|
can be stored in the span group, under this key.
|
|
scorer (Optional[Callable]): The scoring method. Defaults to None.
|
|
"""
|
|
self.vocab = vocab
|
|
self.name = name
|
|
cfg = {
|
|
"moves": moves,
|
|
"update_with_oracle_cut_size": update_with_oracle_cut_size,
|
|
"multitasks": list(multitasks),
|
|
"min_action_freq": min_action_freq,
|
|
"learn_tokens": learn_tokens,
|
|
"beam_width": beam_width,
|
|
"beam_density": beam_density,
|
|
"beam_update_prob": beam_update_prob,
|
|
"incorrect_spans_key": incorrect_spans_key
|
|
}
|
|
if moves is None:
|
|
# EntityRecognizer -> BiluoPushDown
|
|
# DependencyParser -> ArcEager
|
|
moves = self.TransitionSystem(
|
|
self.vocab.strings,
|
|
incorrect_spans_key=incorrect_spans_key
|
|
)
|
|
self.moves = moves
|
|
self.model = model
|
|
if self.moves.n_moves != 0:
|
|
self.set_output(self.moves.n_moves)
|
|
self.cfg = cfg
|
|
self._multitasks = []
|
|
for multitask in cfg["multitasks"]:
|
|
self.add_multitask_objective(multitask)
|
|
|
|
self._rehearsal_model = None
|
|
self.scorer = scorer
|
|
self._cpu_ops = get_ops("cpu") if isinstance(self.model.ops, CupyOps) else self.model.ops
|
|
|
|
def __getnewargs_ex__(self):
|
|
"""This allows pickling the Parser and its keyword-only init arguments"""
|
|
args = (self.vocab, self.model, self.name, self.moves)
|
|
return args, self.cfg
|
|
|
|
@property
|
|
def move_names(self):
|
|
names = []
|
|
cdef TransitionSystem moves = self.moves
|
|
for i in range(self.moves.n_moves):
|
|
name = self.moves.move_name(moves.c[i].move, moves.c[i].label)
|
|
# Explicitly removing the internal "U-" token used for blocking entities
|
|
if name != "U-":
|
|
names.append(name)
|
|
return names
|
|
|
|
@property
|
|
def labels(self):
|
|
class_names = [self.moves.get_class_name(i) for i in range(self.moves.n_moves)]
|
|
return class_names
|
|
|
|
@property
|
|
def label_data(self):
|
|
return self.moves.labels
|
|
|
|
@property
|
|
def tok2vec(self):
|
|
"""Return the embedding and convolutional layer of the model."""
|
|
return self.model.get_ref("tok2vec")
|
|
|
|
@property
|
|
def postprocesses(self):
|
|
# Available for subclasses, e.g. to deprojectivize
|
|
return []
|
|
|
|
@property
|
|
def incorrect_spans_key(self):
|
|
return self.cfg["incorrect_spans_key"]
|
|
|
|
def add_label(self, label):
|
|
resized = False
|
|
for action in self.moves.action_types:
|
|
added = self.moves.add_action(action, label)
|
|
if added:
|
|
resized = True
|
|
if resized:
|
|
self._resize()
|
|
self.vocab.strings.add(label)
|
|
return 1
|
|
return 0
|
|
|
|
def _ensure_labels_are_added(self, docs):
|
|
"""Ensure that all labels for a batch of docs are added."""
|
|
resized = False
|
|
labels = set()
|
|
for doc in docs:
|
|
labels.update(self.moves.get_doc_labels(doc))
|
|
for label in labels:
|
|
for action in self.moves.action_types:
|
|
added = self.moves.add_action(action, label)
|
|
if added:
|
|
self.vocab.strings.add(label)
|
|
resized = True
|
|
if resized:
|
|
self._resize()
|
|
return 1
|
|
return 0
|
|
|
|
def _resize(self):
|
|
self.model.attrs["resize_output"](self.model, self.moves.n_moves)
|
|
if self._rehearsal_model not in (True, False, None):
|
|
self._rehearsal_model.attrs["resize_output"](
|
|
self._rehearsal_model, self.moves.n_moves
|
|
)
|
|
|
|
def add_multitask_objective(self, target):
|
|
# Defined in subclasses, to avoid circular import
|
|
raise NotImplementedError
|
|
|
|
def distill(self,
|
|
teacher_pipe: Optional[TrainablePipe],
|
|
examples: Iterable["Example"],
|
|
*,
|
|
drop: float=0.0,
|
|
sgd: Optional[Optimizer]=None,
|
|
losses: Optional[Dict[str, float]]=None):
|
|
"""Train a pipe (the student) on the predictions of another pipe
|
|
(the teacher). The student is trained on the transition probabilities
|
|
of the teacher.
|
|
|
|
teacher_pipe (Optional[TrainablePipe]): The teacher pipe to learn
|
|
from.
|
|
examples (Iterable[Example]): Distillation examples. The reference
|
|
(teacher) and predicted (student) docs must have the same number of
|
|
tokens and the same orthography.
|
|
drop (float): dropout rate.
|
|
sgd (Optional[Optimizer]): An optimizer. Will be created via
|
|
create_optimizer if not set.
|
|
losses (Optional[Dict[str, float]]): Optional record of loss during
|
|
distillation.
|
|
RETURNS: The updated losses dictionary.
|
|
|
|
DOCS: https://spacy.io/api/dependencyparser#distill
|
|
"""
|
|
if teacher_pipe is None:
|
|
raise ValueError(Errors.E4002.format(name=self.name))
|
|
if losses is None:
|
|
losses = {}
|
|
losses.setdefault(self.name, 0.0)
|
|
|
|
validate_distillation_examples(examples, "TransitionParser.distill")
|
|
|
|
set_dropout_rate(self.model, drop)
|
|
|
|
student_docs = [eg.predicted for eg in examples]
|
|
|
|
max_moves = self.cfg["update_with_oracle_cut_size"]
|
|
if max_moves >= 1:
|
|
# Chop sequences into lengths of this many words, to make the
|
|
# batch uniform length. Since we do not have a gold standard
|
|
# sequence, we use the teacher's predictions as the gold
|
|
# standard.
|
|
max_moves = int(random.uniform(max(max_moves // 2, 1), max_moves * 2))
|
|
states = self._init_batch_from_teacher(teacher_pipe, student_docs, max_moves)
|
|
else:
|
|
states = self.moves.init_batch(student_docs)
|
|
|
|
# We distill as follows: 1. we first let the student predict transition
|
|
# sequences (and the corresponding transition probabilities); (2) we
|
|
# let the teacher follow the student's predicted transition sequences
|
|
# to obtain the teacher's transition probabilities; (3) we compute the
|
|
# gradients of the student's transition distributions relative to the
|
|
# teacher's distributions.
|
|
|
|
student_inputs = TransitionModelInputs(docs=student_docs,
|
|
states=[state.copy() for state in states], moves=self.moves, max_moves=max_moves)
|
|
(student_states, student_scores), backprop_scores = self.model.begin_update(student_inputs)
|
|
actions = _states_diff_to_actions(states, student_states)
|
|
teacher_inputs = TransitionModelInputs(docs=[eg.reference for eg in examples],
|
|
states=states, moves=teacher_pipe.moves, actions=actions)
|
|
(_, teacher_scores) = teacher_pipe.model.predict(teacher_inputs)
|
|
|
|
loss, d_scores = self.get_teacher_student_loss(teacher_scores, student_scores)
|
|
backprop_scores((student_states, d_scores))
|
|
|
|
if sgd is not None:
|
|
self.finish_update(sgd)
|
|
|
|
losses[self.name] += loss
|
|
|
|
return losses
|
|
|
|
|
|
def get_teacher_student_loss(
|
|
self, teacher_scores: List[Floats2d], student_scores: List[Floats2d],
|
|
normalize: bool=False,
|
|
) -> Tuple[float, List[Floats2d]]:
|
|
"""Calculate the loss and its gradient for a batch of student
|
|
scores, relative to teacher scores.
|
|
|
|
teacher_scores: Scores representing the teacher model's predictions.
|
|
student_scores: Scores representing the student model's predictions.
|
|
|
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
|
|
|
DOCS: https://spacy.io/api/dependencyparser#get_teacher_student_loss
|
|
"""
|
|
|
|
# We can't easily hook up a softmax layer in the parsing model, since
|
|
# the get_loss does additional masking. So, we could apply softmax
|
|
# manually here and use Thinc's cross-entropy loss. But it's a bit
|
|
# suboptimal, since we can have a lot of states that would result in
|
|
# many kernel launches. Futhermore the parsing model's backprop expects
|
|
# a XP array, so we'd have to concat the softmaxes anyway. So, like
|
|
# the get_loss implementation, we'll compute the loss and gradients
|
|
# ourselves.
|
|
|
|
teacher_scores = self.model.ops.softmax(self.model.ops.xp.vstack(teacher_scores),
|
|
axis=-1, inplace=True)
|
|
student_scores = self.model.ops.softmax(self.model.ops.xp.vstack(student_scores),
|
|
axis=-1, inplace=True)
|
|
|
|
assert teacher_scores.shape == student_scores.shape
|
|
|
|
d_scores = student_scores - teacher_scores
|
|
if normalize:
|
|
d_scores /= d_scores.shape[0]
|
|
loss = (d_scores**2).sum() / d_scores.size
|
|
|
|
return float(loss), d_scores
|
|
|
|
def init_multitask_objectives(self, get_examples, pipeline, **cfg):
|
|
"""Setup models for secondary objectives, to benefit from multi-task
|
|
learning. This method is intended to be overridden by subclasses.
|
|
|
|
For instance, the dependency parser can benefit from sharing
|
|
an input representation with a label prediction model. These auxiliary
|
|
models are discarded after training.
|
|
"""
|
|
pass
|
|
|
|
def use_params(self, params):
|
|
# Can't decorate cdef class :(. Workaround.
|
|
with self.model.use_params(params):
|
|
yield
|
|
|
|
def pipe(self, docs, *, int batch_size=256):
|
|
"""Process a stream of documents.
|
|
|
|
stream: The sequence of documents to process.
|
|
batch_size (int): Number of documents to accumulate into a working set.
|
|
|
|
YIELDS (Doc): Documents, in order.
|
|
"""
|
|
cdef Doc doc
|
|
error_handler = self.get_error_handler()
|
|
for batch in util.minibatch(docs, size=batch_size):
|
|
batch_in_order = list(batch)
|
|
try:
|
|
by_length = sorted(batch, key=lambda doc: len(doc))
|
|
for subbatch in util.minibatch(by_length, size=max(batch_size//4, 2)):
|
|
subbatch = list(subbatch)
|
|
parse_states = self.predict(subbatch)
|
|
self.set_annotations(subbatch, parse_states)
|
|
yield from batch_in_order
|
|
except Exception as e:
|
|
error_handler(self.name, self, batch_in_order, e)
|
|
|
|
|
|
def predict(self, docs):
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
self._ensure_labels_are_added(docs)
|
|
if not any(len(doc) for doc in docs):
|
|
result = self.moves.init_batch(docs)
|
|
return result
|
|
with _change_attrs(self.model, beam_width=self.cfg["beam_width"], beam_density=self.cfg["beam_density"]):
|
|
inputs = TransitionModelInputs(docs=docs, moves=self.moves)
|
|
states_or_beams, _ = self.model.predict(inputs)
|
|
return states_or_beams
|
|
|
|
def greedy_parse(self, docs, drop=0.):
|
|
self._resize()
|
|
self._ensure_labels_are_added(docs)
|
|
with _change_attrs(self.model, beam_width=1):
|
|
inputs = TransitionModelInputs(docs=docs, moves=self.moves)
|
|
states, _ = self.model.predict(inputs)
|
|
return states
|
|
|
|
def beam_parse(self, docs, int beam_width, float drop=0., beam_density=0.):
|
|
self._ensure_labels_are_added(docs)
|
|
with _change_attrs(self.model, beam_width=self.cfg["beam_width"], beam_density=self.cfg["beam_density"]):
|
|
inputs = TransitionModelInputs(docs=docs, moves=self.moves)
|
|
beams, _ = self.model.predict(inputs)
|
|
return beams
|
|
|
|
def set_annotations(self, docs, states_or_beams):
|
|
cdef StateClass state
|
|
cdef Beam beam
|
|
cdef Doc doc
|
|
states = _beam_utils.collect_states(states_or_beams, docs)
|
|
for i, (state, doc) in enumerate(zip(states, docs)):
|
|
self.moves.set_annotations(state, doc)
|
|
for hook in self.postprocesses:
|
|
hook(doc)
|
|
|
|
def update(self, examples, *, drop=0., sgd=None, losses=None):
|
|
cdef StateClass state
|
|
if losses is None:
|
|
losses = {}
|
|
losses.setdefault(self.name, 0.)
|
|
validate_examples(examples, "Parser.update")
|
|
self._ensure_labels_are_added(
|
|
[eg.x for eg in examples] + [eg.y for eg in examples]
|
|
)
|
|
for multitask in self._multitasks:
|
|
multitask.update(examples, drop=drop, sgd=sgd)
|
|
# We need to take care to act on the whole batch, because we might be
|
|
# getting vectors via a listener.
|
|
n_examples = len([eg for eg in examples if self.moves.has_gold(eg)])
|
|
if n_examples == 0:
|
|
return losses
|
|
set_dropout_rate(self.model, drop)
|
|
docs = [eg.x for eg in examples if len(eg.x)]
|
|
|
|
max_moves = self.cfg["update_with_oracle_cut_size"]
|
|
if max_moves >= 1:
|
|
# Chop sequences into lengths of this many words, to make the
|
|
# batch uniform length.
|
|
max_moves = int(random.uniform(max(max_moves // 2, 1), max_moves * 2))
|
|
init_states, gold_states, _ = self._init_gold_batch(
|
|
examples,
|
|
max_length=max_moves
|
|
)
|
|
else:
|
|
init_states, gold_states, _ = self.moves.init_gold_batch(examples)
|
|
|
|
inputs = TransitionModelInputs(docs=docs, moves=self.moves,
|
|
max_moves=max_moves, states=[state.copy() for state in init_states])
|
|
(pred_states, scores), backprop_scores = self.model.begin_update(inputs)
|
|
if sum(s.shape[0] for s in scores) == 0:
|
|
return losses
|
|
d_scores = self.get_loss((gold_states, init_states, pred_states, scores),
|
|
examples, max_moves)
|
|
backprop_scores((pred_states, d_scores))
|
|
if sgd not in (None, False):
|
|
self.finish_update(sgd)
|
|
losses[self.name] += float((d_scores**2).sum())
|
|
# Ugh, this is annoying. If we're working on GPU, we want to free the
|
|
# memory ASAP. It seems that Python doesn't necessarily get around to
|
|
# removing these in time if we don't explicitly delete? It's confusing.
|
|
del backprop_scores
|
|
return losses
|
|
|
|
def get_loss(self, states_scores, examples, max_moves):
|
|
gold_states, init_states, pred_states, scores = states_scores
|
|
scores = self.model.ops.xp.vstack(scores)
|
|
costs = self._get_costs_from_histories(
|
|
examples,
|
|
gold_states,
|
|
init_states,
|
|
[list(state.history) for state in pred_states],
|
|
max_moves
|
|
)
|
|
xp = get_array_module(scores)
|
|
best_costs = costs.min(axis=1, keepdims=True)
|
|
gscores = scores.copy()
|
|
min_score = scores.min() - 1000
|
|
assert costs.shape == scores.shape, (costs.shape, scores.shape)
|
|
gscores[costs > best_costs] = min_score
|
|
max_ = scores.max(axis=1, keepdims=True)
|
|
gmax = gscores.max(axis=1, keepdims=True)
|
|
exp_scores = xp.exp(scores - max_)
|
|
exp_gscores = xp.exp(gscores - gmax)
|
|
Z = exp_scores.sum(axis=1, keepdims=True)
|
|
gZ = exp_gscores.sum(axis=1, keepdims=True)
|
|
d_scores = exp_scores / Z
|
|
d_scores -= (costs <= best_costs) * (exp_gscores / gZ)
|
|
return d_scores
|
|
|
|
def _get_costs_from_histories(self, examples, gold_states, init_states, histories, max_moves):
|
|
cdef TransitionSystem moves = self.moves
|
|
cdef StateClass state
|
|
cdef int clas
|
|
cdef int nF = self.model.get_dim("nF")
|
|
cdef int nO = moves.n_moves
|
|
cdef int nS = sum([len(history) for history in histories])
|
|
cdef Pool mem = Pool()
|
|
cdef np.ndarray costs_i
|
|
is_valid = <int*>mem.alloc(nO, sizeof(int))
|
|
batch = list(zip(init_states, histories, gold_states))
|
|
n_moves = 0
|
|
output = []
|
|
while batch:
|
|
costs = numpy.zeros((len(batch), nO), dtype="f")
|
|
for i, (state, history, gold) in enumerate(batch):
|
|
costs_i = costs[i]
|
|
clas = history.pop(0)
|
|
moves.set_costs(is_valid, <weight_t*>costs_i.data, state.c, gold)
|
|
action = moves.c[clas]
|
|
action.do(state.c, action.label)
|
|
state.c.history.push_back(clas)
|
|
output.append(costs)
|
|
batch = [(s, h, g) for s, h, g in batch if len(h) != 0]
|
|
if n_moves >= max_moves >= 1:
|
|
break
|
|
n_moves += 1
|
|
|
|
return self.model.ops.xp.vstack(output)
|
|
|
|
def rehearse(self, examples, sgd=None, losses=None, **cfg):
|
|
"""Perform a "rehearsal" update, to prevent catastrophic forgetting."""
|
|
if losses is None:
|
|
losses = {}
|
|
for multitask in self._multitasks:
|
|
if hasattr(multitask, 'rehearse'):
|
|
multitask.rehearse(examples, losses=losses, sgd=sgd)
|
|
if self._rehearsal_model is None:
|
|
return None
|
|
losses.setdefault(self.name, 0.0)
|
|
validate_examples(examples, "Parser.rehearse")
|
|
docs = [eg.predicted for eg in examples]
|
|
# This is pretty dirty, but the NER can resize itself in init_batch,
|
|
# if labels are missing. We therefore have to check whether we need to
|
|
# expand our model output.
|
|
self._resize()
|
|
# Prepare the stepwise model, and get the callback for finishing the batch
|
|
set_dropout_rate(self._rehearsal_model, 0.0)
|
|
set_dropout_rate(self.model, 0.0)
|
|
student_inputs = TransitionModelInputs(docs=docs, moves=self.moves)
|
|
(student_states, student_scores), backprop_scores = self.model.begin_update(student_inputs)
|
|
actions = _states_to_actions(student_states)
|
|
teacher_inputs = TransitionModelInputs(docs=docs, moves=self.moves, actions=actions)
|
|
_, teacher_scores = self._rehearsal_model.predict(teacher_inputs)
|
|
|
|
loss, d_scores = self.get_teacher_student_loss(teacher_scores, student_scores, normalize=True)
|
|
|
|
teacher_scores = self.model.ops.xp.vstack(teacher_scores)
|
|
student_scores = self.model.ops.xp.vstack(student_scores)
|
|
assert teacher_scores.shape == student_scores.shape
|
|
|
|
d_scores = (student_scores - teacher_scores) / teacher_scores.shape[0]
|
|
# If all weights for an output are 0 in the original model, don't
|
|
# supervise that output. This allows us to add classes.
|
|
loss = (d_scores**2).sum() / d_scores.size
|
|
backprop_scores((student_states, d_scores))
|
|
|
|
if sgd is not None:
|
|
self.finish_update(sgd)
|
|
losses[self.name] += loss
|
|
|
|
return losses
|
|
|
|
def update_beam(self, examples, *, beam_width,
|
|
drop=0., sgd=None, losses=None, beam_density=0.0):
|
|
raise NotImplementedError
|
|
|
|
def set_output(self, nO):
|
|
self.model.attrs["resize_output"](self.model, nO)
|
|
|
|
def initialize(self, get_examples, nlp=None, labels=None):
|
|
validate_get_examples(get_examples, "Parser.initialize")
|
|
util.check_lexeme_norms(self.vocab, "parser or NER")
|
|
if labels is not None:
|
|
actions = dict(labels)
|
|
else:
|
|
actions = self.moves.get_actions(
|
|
examples=get_examples(),
|
|
min_freq=self.cfg['min_action_freq'],
|
|
learn_tokens=self.cfg["learn_tokens"]
|
|
)
|
|
for action, labels in self.moves.labels.items():
|
|
actions.setdefault(action, {})
|
|
for label, freq in labels.items():
|
|
if label not in actions[action]:
|
|
actions[action][label] = freq
|
|
self.moves.initialize_actions(actions)
|
|
# make sure we resize so we have an appropriate upper layer
|
|
self._resize()
|
|
doc_sample = []
|
|
if nlp is not None:
|
|
for name, component in nlp.pipeline:
|
|
if component is self:
|
|
break
|
|
# non-trainable components may have a pipe() implementation that refers to dummy
|
|
# predict and set_annotations methods
|
|
if hasattr(component, "pipe"):
|
|
doc_sample = list(component.pipe(doc_sample, batch_size=8))
|
|
else:
|
|
doc_sample = [component(doc) for doc in doc_sample]
|
|
if not doc_sample:
|
|
for example in islice(get_examples(), 10):
|
|
doc_sample.append(example.predicted)
|
|
assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
|
|
self.model.initialize((doc_sample, self.moves))
|
|
if nlp is not None:
|
|
self.init_multitask_objectives(get_examples, nlp.pipeline)
|
|
|
|
def to_disk(self, path, exclude=tuple()):
|
|
serializers = {
|
|
"model": lambda p: (self.model.to_disk(p) if self.model is not True else True),
|
|
"vocab": lambda p: self.vocab.to_disk(p, exclude=exclude),
|
|
"moves": lambda p: self.moves.to_disk(p, exclude=["strings"]),
|
|
"cfg": lambda p: srsly.write_json(p, self.cfg)
|
|
}
|
|
util.to_disk(path, serializers, exclude)
|
|
|
|
def from_disk(self, path, exclude=tuple()):
|
|
deserializers = {
|
|
"vocab": lambda p: self.vocab.from_disk(p, exclude=exclude),
|
|
"moves": lambda p: self.moves.from_disk(p, exclude=["strings"]),
|
|
"cfg": lambda p: self.cfg.update(srsly.read_json(p)),
|
|
"model": lambda p: None,
|
|
}
|
|
util.from_disk(path, deserializers, exclude)
|
|
if "model" not in exclude:
|
|
path = util.ensure_path(path)
|
|
with (path / "model").open("rb") as file_:
|
|
bytes_data = file_.read()
|
|
try:
|
|
self._resize()
|
|
self.model.from_bytes(bytes_data)
|
|
except AttributeError:
|
|
raise ValueError(Errors.E149)
|
|
return self
|
|
|
|
def to_bytes(self, exclude=tuple()):
|
|
serializers = {
|
|
"model": lambda: (self.model.to_bytes()),
|
|
"vocab": lambda: self.vocab.to_bytes(exclude=exclude),
|
|
"moves": lambda: self.moves.to_bytes(exclude=["strings"]),
|
|
"cfg": lambda: srsly.json_dumps(self.cfg, indent=2, sort_keys=True)
|
|
}
|
|
return util.to_bytes(serializers, exclude)
|
|
|
|
def from_bytes(self, bytes_data, exclude=tuple()):
|
|
deserializers = {
|
|
"vocab": lambda b: self.vocab.from_bytes(b, exclude=exclude),
|
|
"moves": lambda b: self.moves.from_bytes(b, exclude=["strings"]),
|
|
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
|
|
"model": lambda b: None,
|
|
}
|
|
msg = util.from_bytes(bytes_data, deserializers, exclude)
|
|
if 'model' not in exclude:
|
|
if 'model' in msg:
|
|
try:
|
|
self.model.from_bytes(msg['model'])
|
|
except AttributeError:
|
|
raise ValueError(Errors.E149) from None
|
|
return self
|
|
|
|
def _init_batch_from_teacher(self, teacher_pipe, docs, max_length):
|
|
"""Make a square batch of length equal to the shortest transition
|
|
sequence or a cap. A long
|
|
doc will get multiple states. Let's say we have a doc of length 2*N,
|
|
where N is the shortest doc. We'll make two states, one representing
|
|
long_doc[:N], and another representing long_doc[N:]. In contrast to
|
|
_init_gold_batch, this version uses a teacher model to generate the
|
|
cut sequences."""
|
|
cdef:
|
|
StateClass state
|
|
TransitionSystem moves = teacher_pipe.moves
|
|
|
|
# Start with the same heuristic as in supervised training: exclude
|
|
# docs that are within the maximum length.
|
|
all_states = moves.init_batch(docs)
|
|
states = []
|
|
to_cut = []
|
|
for state, doc in zip(all_states, docs):
|
|
if not state.is_final():
|
|
if len(doc) < max_length:
|
|
states.append(state)
|
|
else:
|
|
to_cut.append(state)
|
|
|
|
if not to_cut:
|
|
return states
|
|
|
|
# Parse the states that are too long with the teacher's parsing model.
|
|
teacher_inputs = TransitionModelInputs(docs=docs, moves=moves,
|
|
states=[state.copy() for state in to_cut])
|
|
(teacher_states, _ ) = teacher_pipe.model.predict(teacher_inputs)
|
|
|
|
# Step through the teacher's actions and store every state after
|
|
# each multiple of max_length.
|
|
teacher_actions = _states_to_actions(teacher_states)
|
|
while to_cut:
|
|
states.extend(state.copy() for state in to_cut)
|
|
for step_actions in teacher_actions[:max_length]:
|
|
to_cut = moves.apply_actions(to_cut, step_actions)
|
|
teacher_actions = teacher_actions[max_length:]
|
|
|
|
if len(teacher_actions) < max_length:
|
|
break
|
|
|
|
return states
|
|
|
|
def _init_gold_batch(self, examples, max_length):
|
|
"""Make a square batch, of length equal to the shortest transition
|
|
sequence or a cap. A long doc will get multiple states. Let's say we
|
|
have a doc of length 2*N, where N is the shortest doc. We'll make
|
|
two states, one representing long_doc[:N], and another representing
|
|
long_doc[N:]."""
|
|
cdef:
|
|
StateClass start_state
|
|
StateClass state
|
|
Transition action
|
|
TransitionSystem moves = self.moves
|
|
all_states = moves.init_batch([eg.predicted for eg in examples])
|
|
states = []
|
|
golds = []
|
|
to_cut = []
|
|
for state, eg in zip(all_states, examples):
|
|
if moves.has_gold(eg) and not state.is_final():
|
|
gold = moves.init_gold(state, eg)
|
|
if len(eg.x) < max_length:
|
|
states.append(state)
|
|
golds.append(gold)
|
|
else:
|
|
oracle_actions = moves.get_oracle_sequence_from_state(
|
|
state.copy(), gold)
|
|
to_cut.append((eg, state, gold, oracle_actions))
|
|
if not to_cut:
|
|
return states, golds, 0
|
|
cdef int clas
|
|
for eg, state, gold, oracle_actions in to_cut:
|
|
for i in range(0, len(oracle_actions), max_length):
|
|
start_state = state.copy()
|
|
for clas in oracle_actions[i:i+max_length]:
|
|
action = moves.c[clas]
|
|
action.do(state.c, action.label)
|
|
if state.is_final():
|
|
break
|
|
if moves.has_gold(eg, start_state.B(0), state.B(0)):
|
|
states.append(start_state)
|
|
golds.append(gold)
|
|
if state.is_final():
|
|
break
|
|
return states, golds, max_length
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def _change_attrs(model, **kwargs):
|
|
"""Temporarily modify a thinc model's attributes."""
|
|
unset = object()
|
|
old_attrs = {}
|
|
for key, value in kwargs.items():
|
|
old_attrs[key] = model.attrs.get(key, unset)
|
|
model.attrs[key] = value
|
|
yield model
|
|
for key, value in old_attrs.items():
|
|
if value is unset:
|
|
model.attrs.pop(key)
|
|
else:
|
|
model.attrs[key] = value
|
|
|
|
|
|
def _states_to_actions(states: List[StateClass]) -> List[Ints1d]:
|
|
cdef int step
|
|
cdef StateClass state
|
|
cdef StateC* c_state
|
|
actions = []
|
|
while True:
|
|
step = len(actions)
|
|
|
|
step_actions = []
|
|
for state in states:
|
|
c_state = state.c
|
|
if step < c_state.history.size():
|
|
step_actions.append(c_state.history[step])
|
|
|
|
# We are done if we have exhausted all histories.
|
|
if len(step_actions) == 0:
|
|
break
|
|
|
|
actions.append(numpy.array(step_actions, dtype="i"))
|
|
|
|
return actions
|
|
|
|
def _states_diff_to_actions(
|
|
before_states: List[StateClass],
|
|
after_states: List[StateClass]
|
|
) -> List[Ints1d]:
|
|
"""
|
|
Return for two sets of states the actions to go from the first set of
|
|
states to the second set of states. The histories of the first set of
|
|
states must be a prefix of the second set of states.
|
|
"""
|
|
cdef StateClass before_state, after_state
|
|
cdef StateC* c_state_before
|
|
cdef StateC* c_state_after
|
|
|
|
assert len(before_states) == len(after_states)
|
|
|
|
# Check invariant: before states histories must be prefixes of after states.
|
|
for before_state, after_state in zip(before_states, after_states):
|
|
c_state_before = before_state.c
|
|
c_state_after = after_state.c
|
|
|
|
assert equal(c_state_before.history.begin(), c_state_before.history.end(),
|
|
c_state_after.history.begin())
|
|
|
|
actions = []
|
|
while True:
|
|
step = len(actions)
|
|
|
|
step_actions = []
|
|
for before_state, after_state in zip(before_states, after_states):
|
|
c_state_before = before_state.c
|
|
c_state_after = after_state.c
|
|
if step < c_state_after.history.size() - c_state_before.history.size():
|
|
step_actions.append(c_state_after.history[c_state_before.history.size() + step])
|
|
|
|
# We are done if we have exhausted all histories.
|
|
if len(step_actions) == 0:
|
|
break
|
|
|
|
actions.append(numpy.array(step_actions, dtype="i"))
|
|
|
|
return actions
|