mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-19 14:04:12 +03:00
e5debc68e4
* Tagger: use unnormalized probabilities for inference Using unnormalized softmax avoids use of the relatively expensive exp function, which can significantly speed up non-transformer models (e.g. I got a speedup of 27% on a German tagging + parsing pipeline). * Add spacy.Tagger.v2 with configurable normalization Normalization of probabilities is disabled by default to improve performance. * Update documentation, models, and tests to spacy.Tagger.v2 * Move Tagger.v1 to spacy-legacy * docs/architectures: run prettier * Unnormalized softmax is now a Softmax_v2 option * Require thinc 8.0.14 and spacy-legacy 3.0.9
349 lines
11 KiB
Python
349 lines
11 KiB
Python
from pathlib import Path
|
|
import numpy as np
|
|
import pytest
|
|
import srsly
|
|
from spacy.vocab import Vocab
|
|
from thinc.api import Config
|
|
|
|
from ..util import make_tempdir
|
|
from ... import util
|
|
from ...lang.en import English
|
|
from ...training.initialize import init_nlp
|
|
from ...training.loop import train
|
|
from ...training.pretrain import pretrain
|
|
from ...tokens import Doc, DocBin
|
|
from ...language import DEFAULT_CONFIG_PRETRAIN_PATH, DEFAULT_CONFIG_PATH
|
|
|
|
pretrain_string_listener = """
|
|
[nlp]
|
|
lang = "en"
|
|
pipeline = ["tok2vec", "tagger"]
|
|
|
|
[components]
|
|
|
|
[components.tok2vec]
|
|
factory = "tok2vec"
|
|
|
|
[components.tok2vec.model]
|
|
@architectures = "spacy.HashEmbedCNN.v1"
|
|
pretrained_vectors = null
|
|
width = 342
|
|
depth = 4
|
|
window_size = 1
|
|
embed_size = 2000
|
|
maxout_pieces = 3
|
|
subword_features = true
|
|
|
|
[components.tagger]
|
|
factory = "tagger"
|
|
|
|
[components.tagger.model]
|
|
@architectures = "spacy.Tagger.v2"
|
|
|
|
[components.tagger.model.tok2vec]
|
|
@architectures = "spacy.Tok2VecListener.v1"
|
|
width = ${components.tok2vec.model.width}
|
|
|
|
[pretraining]
|
|
max_epochs = 5
|
|
|
|
[training]
|
|
max_epochs = 5
|
|
"""
|
|
|
|
pretrain_string_internal = """
|
|
[nlp]
|
|
lang = "en"
|
|
pipeline = ["tagger"]
|
|
|
|
[components]
|
|
|
|
[components.tagger]
|
|
factory = "tagger"
|
|
|
|
[components.tagger.model]
|
|
@architectures = "spacy.Tagger.v2"
|
|
|
|
[components.tagger.model.tok2vec]
|
|
@architectures = "spacy.HashEmbedCNN.v1"
|
|
pretrained_vectors = null
|
|
width = 342
|
|
depth = 4
|
|
window_size = 1
|
|
embed_size = 2000
|
|
maxout_pieces = 3
|
|
subword_features = true
|
|
|
|
[pretraining]
|
|
max_epochs = 5
|
|
|
|
[training]
|
|
max_epochs = 5
|
|
"""
|
|
|
|
|
|
pretrain_string_vectors = """
|
|
[nlp]
|
|
lang = "en"
|
|
pipeline = ["tok2vec", "tagger"]
|
|
|
|
[components]
|
|
|
|
[components.tok2vec]
|
|
factory = "tok2vec"
|
|
|
|
[components.tok2vec.model]
|
|
@architectures = "spacy.HashEmbedCNN.v1"
|
|
pretrained_vectors = null
|
|
width = 342
|
|
depth = 4
|
|
window_size = 1
|
|
embed_size = 2000
|
|
maxout_pieces = 3
|
|
subword_features = true
|
|
|
|
[components.tagger]
|
|
factory = "tagger"
|
|
|
|
[components.tagger.model]
|
|
@architectures = "spacy.Tagger.v2"
|
|
|
|
[components.tagger.model.tok2vec]
|
|
@architectures = "spacy.Tok2VecListener.v1"
|
|
width = ${components.tok2vec.model.width}
|
|
|
|
[pretraining]
|
|
max_epochs = 5
|
|
|
|
[pretraining.objective]
|
|
@architectures = spacy.PretrainVectors.v1
|
|
maxout_pieces = 3
|
|
hidden_size = 300
|
|
loss = cosine
|
|
|
|
[training]
|
|
max_epochs = 5
|
|
"""
|
|
|
|
CHAR_OBJECTIVES = [
|
|
{},
|
|
{"@architectures": "spacy.PretrainCharacters.v1"},
|
|
{
|
|
"@architectures": "spacy.PretrainCharacters.v1",
|
|
"maxout_pieces": 5,
|
|
"hidden_size": 42,
|
|
"n_characters": 2,
|
|
},
|
|
]
|
|
|
|
VECTOR_OBJECTIVES = [
|
|
{
|
|
"@architectures": "spacy.PretrainVectors.v1",
|
|
"maxout_pieces": 3,
|
|
"hidden_size": 300,
|
|
"loss": "cosine",
|
|
},
|
|
{
|
|
"@architectures": "spacy.PretrainVectors.v1",
|
|
"maxout_pieces": 2,
|
|
"hidden_size": 200,
|
|
"loss": "L2",
|
|
},
|
|
]
|
|
|
|
|
|
def test_pretraining_default():
|
|
"""Test that pretraining defaults to a character objective"""
|
|
config = Config().from_str(pretrain_string_internal)
|
|
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
|
|
filled = nlp.config
|
|
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
|
|
filled = pretrain_config.merge(filled)
|
|
assert "PretrainCharacters" in filled["pretraining"]["objective"]["@architectures"]
|
|
|
|
|
|
@pytest.mark.parametrize("objective", CHAR_OBJECTIVES)
|
|
def test_pretraining_tok2vec_characters(objective):
|
|
"""Test that pretraining works with the character objective"""
|
|
config = Config().from_str(pretrain_string_listener)
|
|
config["pretraining"]["objective"] = objective
|
|
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
|
|
filled = nlp.config
|
|
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
|
|
filled = pretrain_config.merge(filled)
|
|
with make_tempdir() as tmp_dir:
|
|
file_path = write_sample_jsonl(tmp_dir)
|
|
filled["paths"]["raw_text"] = file_path
|
|
filled = filled.interpolate()
|
|
assert filled["pretraining"]["component"] == "tok2vec"
|
|
pretrain(filled, tmp_dir)
|
|
assert Path(tmp_dir / "model0.bin").exists()
|
|
assert Path(tmp_dir / "model4.bin").exists()
|
|
assert not Path(tmp_dir / "model5.bin").exists()
|
|
|
|
|
|
@pytest.mark.parametrize("objective", VECTOR_OBJECTIVES)
|
|
def test_pretraining_tok2vec_vectors_fail(objective):
|
|
"""Test that pretraining doesn't works with the vectors objective if there are no static vectors"""
|
|
config = Config().from_str(pretrain_string_listener)
|
|
config["pretraining"]["objective"] = objective
|
|
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
|
|
filled = nlp.config
|
|
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
|
|
filled = pretrain_config.merge(filled)
|
|
with make_tempdir() as tmp_dir:
|
|
file_path = write_sample_jsonl(tmp_dir)
|
|
filled["paths"]["raw_text"] = file_path
|
|
filled = filled.interpolate()
|
|
assert filled["initialize"]["vectors"] is None
|
|
with pytest.raises(ValueError):
|
|
pretrain(filled, tmp_dir)
|
|
|
|
|
|
@pytest.mark.parametrize("objective", VECTOR_OBJECTIVES)
|
|
def test_pretraining_tok2vec_vectors(objective):
|
|
"""Test that pretraining works with the vectors objective and static vectors defined"""
|
|
config = Config().from_str(pretrain_string_listener)
|
|
config["pretraining"]["objective"] = objective
|
|
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
|
|
filled = nlp.config
|
|
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
|
|
filled = pretrain_config.merge(filled)
|
|
with make_tempdir() as tmp_dir:
|
|
file_path = write_sample_jsonl(tmp_dir)
|
|
filled["paths"]["raw_text"] = file_path
|
|
nlp_path = write_vectors_model(tmp_dir)
|
|
filled["initialize"]["vectors"] = nlp_path
|
|
filled = filled.interpolate()
|
|
pretrain(filled, tmp_dir)
|
|
|
|
|
|
@pytest.mark.parametrize("config", [pretrain_string_internal, pretrain_string_listener])
|
|
def test_pretraining_tagger_tok2vec(config):
|
|
"""Test pretraining of the tagger's tok2vec layer (via a listener)"""
|
|
config = Config().from_str(pretrain_string_listener)
|
|
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
|
|
filled = nlp.config
|
|
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
|
|
filled = pretrain_config.merge(filled)
|
|
with make_tempdir() as tmp_dir:
|
|
file_path = write_sample_jsonl(tmp_dir)
|
|
filled["paths"]["raw_text"] = file_path
|
|
filled["pretraining"]["component"] = "tagger"
|
|
filled["pretraining"]["layer"] = "tok2vec"
|
|
filled = filled.interpolate()
|
|
pretrain(filled, tmp_dir)
|
|
assert Path(tmp_dir / "model0.bin").exists()
|
|
assert Path(tmp_dir / "model4.bin").exists()
|
|
assert not Path(tmp_dir / "model5.bin").exists()
|
|
|
|
|
|
def test_pretraining_tagger():
|
|
"""Test pretraining of the tagger itself will throw an error (not an appropriate tok2vec layer)"""
|
|
config = Config().from_str(pretrain_string_internal)
|
|
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
|
|
filled = nlp.config
|
|
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
|
|
filled = pretrain_config.merge(filled)
|
|
with make_tempdir() as tmp_dir:
|
|
file_path = write_sample_jsonl(tmp_dir)
|
|
filled["paths"]["raw_text"] = file_path
|
|
filled["pretraining"]["component"] = "tagger"
|
|
filled = filled.interpolate()
|
|
with pytest.raises(ValueError):
|
|
pretrain(filled, tmp_dir)
|
|
|
|
|
|
def test_pretraining_training():
|
|
"""Test that training can use a pretrained Tok2Vec model"""
|
|
config = Config().from_str(pretrain_string_internal)
|
|
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
|
|
filled = nlp.config
|
|
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
|
|
filled = pretrain_config.merge(filled)
|
|
train_config = util.load_config(DEFAULT_CONFIG_PATH)
|
|
filled = train_config.merge(filled)
|
|
with make_tempdir() as tmp_dir:
|
|
pretrain_dir = tmp_dir / "pretrain"
|
|
pretrain_dir.mkdir()
|
|
file_path = write_sample_jsonl(pretrain_dir)
|
|
filled["paths"]["raw_text"] = file_path
|
|
filled["pretraining"]["component"] = "tagger"
|
|
filled["pretraining"]["layer"] = "tok2vec"
|
|
train_dir = tmp_dir / "train"
|
|
train_dir.mkdir()
|
|
train_path, dev_path = write_sample_training(train_dir)
|
|
filled["paths"]["train"] = train_path
|
|
filled["paths"]["dev"] = dev_path
|
|
filled = filled.interpolate()
|
|
P = filled["pretraining"]
|
|
nlp_base = init_nlp(filled)
|
|
model_base = (
|
|
nlp_base.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
|
|
)
|
|
embed_base = None
|
|
for node in model_base.walk():
|
|
if node.name == "hashembed":
|
|
embed_base = node
|
|
pretrain(filled, pretrain_dir)
|
|
pretrained_model = Path(pretrain_dir / "model3.bin")
|
|
assert pretrained_model.exists()
|
|
filled["initialize"]["init_tok2vec"] = str(pretrained_model)
|
|
nlp = init_nlp(filled)
|
|
model = nlp.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
|
|
embed = None
|
|
for node in model.walk():
|
|
if node.name == "hashembed":
|
|
embed = node
|
|
# ensure that the tok2vec weights are actually changed by the pretraining
|
|
assert np.any(np.not_equal(embed.get_param("E"), embed_base.get_param("E")))
|
|
train(nlp, train_dir)
|
|
|
|
|
|
def write_sample_jsonl(tmp_dir):
|
|
data = [
|
|
{
|
|
"meta": {"id": "1"},
|
|
"text": "This is the best TV you'll ever buy!",
|
|
"cats": {"pos": 1, "neg": 0},
|
|
},
|
|
{
|
|
"meta": {"id": "2"},
|
|
"text": "I wouldn't buy this again.",
|
|
"cats": {"pos": 0, "neg": 1},
|
|
},
|
|
]
|
|
file_path = f"{tmp_dir}/text.jsonl"
|
|
srsly.write_jsonl(file_path, data)
|
|
return file_path
|
|
|
|
|
|
def write_sample_training(tmp_dir):
|
|
words = ["The", "players", "start", "."]
|
|
tags = ["DT", "NN", "VBZ", "."]
|
|
doc = Doc(English().vocab, words=words, tags=tags)
|
|
doc_bin = DocBin()
|
|
doc_bin.add(doc)
|
|
train_path = f"{tmp_dir}/train.spacy"
|
|
dev_path = f"{tmp_dir}/dev.spacy"
|
|
doc_bin.to_disk(train_path)
|
|
doc_bin.to_disk(dev_path)
|
|
return train_path, dev_path
|
|
|
|
|
|
def write_vectors_model(tmp_dir):
|
|
import numpy
|
|
|
|
vocab = Vocab()
|
|
vector_data = {
|
|
"dog": numpy.random.uniform(-1, 1, (300,)),
|
|
"cat": numpy.random.uniform(-1, 1, (300,)),
|
|
"orange": numpy.random.uniform(-1, 1, (300,)),
|
|
}
|
|
for word, vector in vector_data.items():
|
|
vocab.set_vector(word, vector)
|
|
nlp_path = tmp_dir / "vectors_model"
|
|
nlp = English(vocab)
|
|
nlp.to_disk(nlp_path)
|
|
return str(nlp_path)
|