mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-07 15:56:32 +03:00
a183db3cef
* Try to fix doc.copy * Set dev version * Make vocab always own lexemes * Change version * Add SpanGroups.copy method * Fix set_annotations during Parser.update * Fix dict proxy copy * Upd version * Fix copying SpanGroups * Fix set_annotations in parser.update * Fix parser set_annotations during update * Revert "Fix parser set_annotations during update" This reverts commiteb138c89ed
. * Revert "Fix set_annotations in parser.update" This reverts commitc6df0eafd0
. * Fix set_annotations during parser update * Inc version * Handle final states in get_oracle_sequence * Inc version * Try to fix parser training * Inc version * Fix * Inc version * Fix parser oracle * Inc version * Inc version * Fix transition has_gold * Inc version * Try to use real histories, not oracle * Inc version * Upd parser * Inc version * WIP on rewrite parser * WIP refactor parser * New progress on parser model refactor * Prepare to remove parser_model.pyx * Convert parser from cdef class * Delete spacy.ml.parser_model * Delete _precomputable_affine module * Wire up tb_framework to new parser model * Wire up parser model * Uncython ner.pyx and dep_parser.pyx * Uncython * Work on parser model * Support unseen_classes in parser model * Support unseen classes in parser * Cleaner handling of unseen classes * Work through tests * Keep working through errors * Keep working through errors * Work on parser. 15 tests failing * Xfail beam stuff. 9 failures * More xfail. 7 failures * Xfail. 6 failures * cleanup * formatting * fixes * pass nO through * Fix empty doc in update * Hackishly fix resizing. 3 failures * Fix redundant test. 2 failures * Add reference version * black formatting * Get tests passing with reference implementation * Fix missing prints * Add missing file * Improve indexing on reference implementation * Get non-reference forward func working * Start rigging beam back up * removing redundant tests, cf #8106 * black formatting * temporarily xfailing issue 4314 * make flake8 happy again * mypy fixes * ensure labels are added upon predict * cleanup remnants from merge conflicts * Improve unseen label masking Two changes to speed up masking by ~10%: - Use a bool array rather than an array of float32. - Let the mask indicate whether a label was seen, rather than unseen. The mask is most frequently used to index scores for seen labels. However, since the mask marked unseen labels, this required computing an intermittent flipped mask. * Write moves costs directly into numpy array (#10163) This avoids elementwise indexing and the allocation of an additional array. Gives a ~15% speed improvement when using batch_by_sequence with size 32. * Temporarily disable ner and rehearse tests Until rehearse is implemented again in the refactored parser. * Fix loss serialization issue (#10600) * Fix loss serialization issue Serialization of a model fails with: TypeError: array(738.3855, dtype=float32) is not JSON serializable Fix this using float conversion. * Disable CI steps that require spacy.TransitionBasedParser.v2 After finishing the refactor, TransitionBasedParser.v2 should be provided for backwards compat. * Add back support for beam parsing to the refactored parser (#10633) * Add back support for beam parsing Beam parsing was already implemented as part of the `BeamBatch` class. This change makes its counterpart `GreedyBatch`. Both classes are hooked up in `TransitionModel`, selecting `GreedyBatch` when the beam size is one, or `BeamBatch` otherwise. * Use kwarg for beam width Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Avoid implicit default for beam_width and beam_density * Parser.{beam,greedy}_parse: ensure labels are added * Remove 'deprecated' comments Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Parser `StateC` optimizations (#10746) * `StateC`: Optimizations Avoid GIL acquisition in `__init__` Increase default buffer capacities on init Reduce C++ exception overhead * Fix typo * Replace `set::count` with `set::find` * Add exception attribute to c'tor * Remove unused import * Use a power-of-two value for initial capacity Use default-insert to init `_heads` and `_unshiftable` * Merge `cdef` variable declarations and assignments * Vectorize `example.get_aligned_parses` (#10789) * `example`: Vectorize `get_aligned_parse` Rename `numpy` import * Convert aligned array to lists before returning * Revert import renaming * Elide slice arguments when selecting the entire range * Tagger/morphologizer alignment performance optimizations (#10798) * `example`: Unwrap `numpy` scalar arrays before passing them to `StringStore.__getitem__` * `AlignmentArray`: Use native list as staging buffer for offset calculation * `example`: Vectorize `get_aligned` * Hoist inner functions out of `get_aligned` * Replace inline `if..else` clause in assignment statement * `AlignmentArray`: Use raw indexing into offset and data `numpy` arrays * `example`: Replace array unique value check with `groupby` * `example`: Correctly exclude tokens with no alignment in `_get_aligned_vectorized` Simplify `_get_aligned_non_vectorized` * `util`: Update `all_equal` docstring * Explicitly use `int32_t*` * Restore C CPU inference in the refactored parser (#10747) * Bring back the C parsing model The C parsing model is used for CPU inference and is still faster for CPU inference than the forward pass of the Thinc model. * Use C sgemm provided by the Ops implementation * Make tb_framework module Cython, merge in C forward implementation * TransitionModel: raise in backprop returned from forward_cpu * Re-enable greedy parse test * Return transition scores when forward_cpu is used * Apply suggestions from code review Import `Model` from `thinc.api` Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Use relative imports in tb_framework * Don't assume a default for beam_width * We don't have a direct dependency on BLIS anymore * Rename forwards to _forward_{fallback,greedy_cpu} * Require thinc >=8.1.0,<8.2.0 * tb_framework: clean up imports * Fix return type of _get_seen_mask * Move up _forward_greedy_cpu * Style fixes. * Lower thinc lowerbound to 8.1.0.dev0 * Formatting fix Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Reimplement parser rehearsal function (#10878) * Reimplement parser rehearsal function Before the parser refactor, rehearsal was driven by a loop in the `rehearse` method itself. For each parsing step, the loops would: 1. Get the predictions of the teacher. 2. Get the predictions and backprop function of the student. 3. Compute the loss and backprop into the student. 4. Move the teacher and student forward with the predictions of the student. In the refactored parser, we cannot perform search stepwise rehearsal anymore, since the model now predicts all parsing steps at once. Therefore, rehearsal is performed in the following steps: 1. Get the predictions of all parsing steps from the student, along with its backprop function. 2. Get the predictions from the teacher, but use the predictions of the student to advance the parser while doing so. 3. Compute the loss and backprop into the student. To support the second step a new method, `advance_with_actions` is added to `GreedyBatch`, which performs the provided parsing steps. * tb_framework: wrap upper_W and upper_b in Linear Thinc's Optimizer cannot handle resizing of existing parameters. Until it does, we work around this by wrapping the weights/biases of the upper layer of the parser model in Linear. When the upper layer is resized, we copy over the existing parameters into a new Linear instance. This does not trigger an error in Optimizer, because it sees the resized layer as a new set of parameters. * Add test for TransitionSystem.apply_actions * Better FIXME marker Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> * Fixes from Madeesh * Apply suggestions from Sofie Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Remove useless assignment Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Rename some identifiers in the parser refactor (#10935) * Rename _parseC to _parse_batch * tb_framework: prefix many auxiliary functions with underscore To clearly state the intent that they are private. * Rename `lower` to `hidden`, `upper` to `output` * Parser slow test fixup We don't have TransitionBasedParser.{v1,v2} until we bring it back as a legacy option. * Remove last vestiges of PrecomputableAffine This does not exist anymore as a separate layer. * ner: re-enable sentence boundary checks * Re-enable test that works now. * test_ner: make loss test more strict again * Remove commented line * Re-enable some more beam parser tests * Remove unused _forward_reference function * Update for CBlas changes in Thinc 8.1.0.dev2 Bump thinc dependency to 8.1.0.dev3. * Remove references to spacy.TransitionBasedParser.{v1,v2} Since they will not be offered starting with spaCy v4. * `tb_framework`: Replace references to `thinc.backends.linalg` with `CBlas` * dont use get_array_module (#11056) (#11293) Co-authored-by: kadarakos <kadar.akos@gmail.com> * Move `thinc.extra.search` to `spacy.pipeline._parser_internals` (#11317) * `search`: Move from `thinc.extra.search` Fix NPE in `Beam.__dealloc__` * `pytest`: Add support for executing Cython tests Move `search` tests from thinc and patch them to run with `pytest` * `mypy` fix * Update comment * `conftest`: Expose `register_cython_tests` * Remove unused import * Move `argmax` impls to new `_parser_utils` Cython module (#11410) * Parser does not have to be a cdef class anymore This also fixes validation of the initialization schema. * Add back spacy.TransitionBasedParser.v2 * Fix a rename that was missed in #10878. So that rehearsal tests pass. * Remove module from setup.py that got added during the merge * Bring back support for `update_with_oracle_cut_size` (#12086) * Bring back support for `update_with_oracle_cut_size` This option was available in the pre-refactor parser, but was never implemented in the refactored parser. This option cuts transition sequences that are longer than `update_with_oracle_cut` size into separate sequences that have at most `update_with_oracle_cut` transitions. The oracle (gold standard) transition sequence is used to determine the cuts and the initial states for the additional sequences. Applying this cut makes the batches more homogeneous in the transition sequence lengths, making forward passes (and as a consequence training) much faster. Training time 1000 steps on de_core_news_lg: - Before this change: 149s - After this change: 68s - Pre-refactor parser: 81s * Fix a rename that was missed in #10878. So that rehearsal tests pass. * Apply suggestions from @shadeMe * Use chained conditional * Test with update_with_oracle_cut_size={0, 1, 5, 100} And fix a git that occurs with a cut size of 1. * Fix up some merge fall out * Update parser distillation for the refactor In the old parser, we'd iterate over the transitions in the distill function and compute the loss/gradients on the go. In the refactored parser, we first let the student model parse the inputs. Then we'll let the teacher compute the transition probabilities of the states in the student's transition sequence. We can then compute the gradients of the student given the teacher. * Add back spacy.TransitionBasedParser.v1 references - Accordion in the architecture docs. - Test in test_parse, but disabled until we have a spacy-legacy release. Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: kadarakos <kadar.akos@gmail.com>
668 lines
24 KiB
Cython
668 lines
24 KiB
Cython
from collections.abc import Iterable as IterableInstance
|
|
import numpy
|
|
from murmurhash.mrmr cimport hash64
|
|
|
|
from ..tokens.doc cimport Doc
|
|
from ..tokens.span cimport Span
|
|
from ..tokens.span import Span
|
|
from ..attrs import IDS
|
|
from .alignment import Alignment
|
|
from .iob_utils import biluo_to_iob, offsets_to_biluo_tags, doc_to_biluo_tags
|
|
from .iob_utils import biluo_tags_to_spans, remove_bilu_prefix
|
|
from ..errors import Errors, Warnings
|
|
from ..pipeline._parser_internals import nonproj
|
|
from ..tokens.token cimport MISSING_DEP
|
|
from ..util import logger, to_ternary_int, all_equal
|
|
|
|
|
|
cpdef Doc annotations_to_doc(vocab, tok_annot, doc_annot):
|
|
""" Create a Doc from dictionaries with token and doc annotations. """
|
|
attrs, array = _annot2array(vocab, tok_annot, doc_annot)
|
|
output = Doc(vocab, words=tok_annot["ORTH"], spaces=tok_annot["SPACY"])
|
|
if "entities" in doc_annot:
|
|
_add_entities_to_doc(output, doc_annot["entities"])
|
|
if "spans" in doc_annot:
|
|
_add_spans_to_doc(output, doc_annot["spans"])
|
|
if array.size:
|
|
output = output.from_array(attrs, array)
|
|
# links are currently added with ENT_KB_ID on the token level
|
|
output.cats.update(doc_annot.get("cats", {}))
|
|
return output
|
|
|
|
|
|
def validate_examples(examples, method):
|
|
"""Check that a batch of examples received during processing is valid.
|
|
This function lives here to prevent circular imports.
|
|
|
|
examples (Iterable[Examples]): A batch of examples.
|
|
method (str): The method name to show in error messages.
|
|
"""
|
|
if not isinstance(examples, IterableInstance):
|
|
err = Errors.E978.format(name=method, types=type(examples))
|
|
raise TypeError(err)
|
|
wrong = set([type(eg) for eg in examples if not isinstance(eg, Example)])
|
|
if wrong:
|
|
err = Errors.E978.format(name=method, types=wrong)
|
|
raise TypeError(err)
|
|
|
|
|
|
def validate_distillation_examples(examples, method):
|
|
validate_examples(examples, method)
|
|
for eg in examples:
|
|
if [token.text for token in eg.reference] != [token.text for token in eg.predicted]:
|
|
raise ValueError(Errors.E4003)
|
|
|
|
|
|
def validate_get_examples(get_examples, method):
|
|
"""Check that a generator of a batch of examples received during processing is valid:
|
|
the callable produces a non-empty list of Example objects.
|
|
This function lives here to prevent circular imports.
|
|
|
|
get_examples (Callable[[], Iterable[Example]]): A function that produces a batch of examples.
|
|
method (str): The method name to show in error messages.
|
|
"""
|
|
if get_examples is None or not hasattr(get_examples, "__call__"):
|
|
err = Errors.E930.format(method=method, obj=type(get_examples))
|
|
raise TypeError(err)
|
|
examples = get_examples()
|
|
if not examples:
|
|
err = Errors.E930.format(method=method, obj=examples)
|
|
raise TypeError(err)
|
|
validate_examples(examples, method)
|
|
|
|
|
|
cdef class Example:
|
|
def __init__(self, Doc predicted, Doc reference, *, alignment=None):
|
|
if predicted is None:
|
|
raise TypeError(Errors.E972.format(arg="predicted"))
|
|
if reference is None:
|
|
raise TypeError(Errors.E972.format(arg="reference"))
|
|
self.predicted = predicted
|
|
self.reference = reference
|
|
self._cached_alignment = alignment
|
|
|
|
def __len__(self):
|
|
return len(self.predicted)
|
|
|
|
property predicted:
|
|
def __get__(self):
|
|
return self.x
|
|
|
|
def __set__(self, doc):
|
|
self.x = doc
|
|
self._cached_alignment = None
|
|
self._cached_words_x = [t.text for t in doc]
|
|
|
|
property reference:
|
|
def __get__(self):
|
|
return self.y
|
|
|
|
def __set__(self, doc):
|
|
self.y = doc
|
|
self._cached_alignment = None
|
|
self._cached_words_y = [t.text for t in doc]
|
|
|
|
def copy(self):
|
|
return Example(
|
|
self.x.copy(),
|
|
self.y.copy()
|
|
)
|
|
|
|
@classmethod
|
|
def from_dict(cls, Doc predicted, dict example_dict):
|
|
if predicted is None:
|
|
raise ValueError(Errors.E976.format(n="first", type="Doc"))
|
|
if example_dict is None:
|
|
raise ValueError(Errors.E976.format(n="second", type="dict"))
|
|
example_dict = _fix_legacy_dict_data(example_dict)
|
|
tok_dict, doc_dict = _parse_example_dict_data(example_dict)
|
|
if "ORTH" not in tok_dict:
|
|
tok_dict["ORTH"] = [tok.text for tok in predicted]
|
|
tok_dict["SPACY"] = [tok.whitespace_ for tok in predicted]
|
|
return Example(
|
|
predicted,
|
|
annotations_to_doc(predicted.vocab, tok_dict, doc_dict)
|
|
)
|
|
|
|
@property
|
|
def alignment(self):
|
|
x_sig = hash64(self.x.c, sizeof(self.x.c[0]) * self.x.length, 0)
|
|
y_sig = hash64(self.y.c, sizeof(self.y.c[0]) * self.y.length, 0)
|
|
if self._cached_alignment is None:
|
|
words_x = [token.text for token in self.x]
|
|
words_y = [token.text for token in self.y]
|
|
self._x_sig = x_sig
|
|
self._y_sig = y_sig
|
|
self._cached_words_x = words_x
|
|
self._cached_words_y = words_y
|
|
self._cached_alignment = Alignment.from_strings(words_x, words_y)
|
|
return self._cached_alignment
|
|
elif self._x_sig == x_sig and self._y_sig == y_sig:
|
|
# If we have a cached alignment, check whether the cache is invalid
|
|
# due to retokenization. To make this check fast in loops, we first
|
|
# check a hash of the TokenC arrays.
|
|
return self._cached_alignment
|
|
else:
|
|
words_x = [token.text for token in self.x]
|
|
words_y = [token.text for token in self.y]
|
|
if words_x == self._cached_words_x and words_y == self._cached_words_y:
|
|
self._x_sig = x_sig
|
|
self._y_sig = y_sig
|
|
return self._cached_alignment
|
|
else:
|
|
self._cached_alignment = Alignment.from_strings(words_x, words_y)
|
|
self._cached_words_x = words_x
|
|
self._cached_words_y = words_y
|
|
self._x_sig = x_sig
|
|
self._y_sig = y_sig
|
|
return self._cached_alignment
|
|
|
|
|
|
def _get_aligned_vectorized(self, align, gold_values):
|
|
# Fast path for Doc attributes/fields that are predominantly a single value,
|
|
# i.e., TAG, POS, MORPH.
|
|
x2y_single_toks = []
|
|
x2y_single_toks_i = []
|
|
|
|
x2y_multiple_toks = []
|
|
x2y_multiple_toks_i = []
|
|
|
|
# Gather indices of gold tokens aligned to the candidate tokens into two buckets.
|
|
# Bucket 1: All tokens that have a one-to-one alignment.
|
|
# Bucket 2: All tokens that have a one-to-many alignment.
|
|
for idx, token in enumerate(self.predicted):
|
|
aligned_gold_i = align[token.i]
|
|
aligned_gold_len = len(aligned_gold_i)
|
|
|
|
if aligned_gold_len == 1:
|
|
x2y_single_toks.append(aligned_gold_i.item())
|
|
x2y_single_toks_i.append(idx)
|
|
elif aligned_gold_len > 1:
|
|
x2y_multiple_toks.append(aligned_gold_i)
|
|
x2y_multiple_toks_i.append(idx)
|
|
|
|
# Map elements of the first bucket directly to the output array.
|
|
output = numpy.full(len(self.predicted), None)
|
|
output[x2y_single_toks_i] = gold_values[x2y_single_toks].squeeze()
|
|
|
|
# Collapse many-to-one alignments into one-to-one alignments if they
|
|
# share the same value. Map to None in all other cases.
|
|
for i in range(len(x2y_multiple_toks)):
|
|
aligned_gold_values = gold_values[x2y_multiple_toks[i]]
|
|
|
|
# If all aligned tokens have the same value, use it.
|
|
if all_equal(aligned_gold_values):
|
|
x2y_multiple_toks[i] = aligned_gold_values[0].item()
|
|
else:
|
|
x2y_multiple_toks[i] = None
|
|
|
|
output[x2y_multiple_toks_i] = x2y_multiple_toks
|
|
|
|
return output.tolist()
|
|
|
|
|
|
def _get_aligned_non_vectorized(self, align, gold_values):
|
|
# Slower path for fields that return multiple values (resulting
|
|
# in ragged arrays that cannot be vectorized trivially).
|
|
output = [None] * len(self.predicted)
|
|
|
|
for token in self.predicted:
|
|
aligned_gold_i = align[token.i]
|
|
values = gold_values[aligned_gold_i].ravel()
|
|
if len(values) == 1:
|
|
output[token.i] = values.item()
|
|
elif all_equal(values):
|
|
# If all aligned tokens have the same value, use it.
|
|
output[token.i] = values[0].item()
|
|
|
|
return output
|
|
|
|
|
|
def get_aligned(self, field, as_string=False):
|
|
"""Return an aligned array for a token attribute."""
|
|
align = self.alignment.x2y
|
|
gold_values = self.reference.to_array([field])
|
|
|
|
if len(gold_values.shape) == 1:
|
|
output = self._get_aligned_vectorized(align, gold_values)
|
|
else:
|
|
output = self._get_aligned_non_vectorized(align, gold_values)
|
|
|
|
vocab = self.reference.vocab
|
|
if as_string and field not in ["ENT_IOB", "SENT_START"]:
|
|
output = [vocab.strings[o] if o is not None else o for o in output]
|
|
|
|
return output
|
|
|
|
def get_aligned_parse(self, projectivize=True):
|
|
cand_to_gold = self.alignment.x2y
|
|
gold_to_cand = self.alignment.y2x
|
|
heads = [token.head.i for token in self.y]
|
|
deps = [token.dep_ for token in self.y]
|
|
|
|
if projectivize:
|
|
proj_heads, proj_deps = nonproj.projectivize(heads, deps)
|
|
has_deps = [token.has_dep() for token in self.y]
|
|
has_heads = [token.has_head() for token in self.y]
|
|
|
|
# ensure that missing data remains missing
|
|
heads = [h if has_heads[i] else heads[i] for i, h in enumerate(proj_heads)]
|
|
deps = [d if has_deps[i] else deps[i] for i, d in enumerate(proj_deps)]
|
|
|
|
# Select all candidate tokens that are aligned to a single gold token.
|
|
c2g_single_toks = numpy.where(cand_to_gold.lengths == 1)[0]
|
|
|
|
# Fetch all aligned gold token incides.
|
|
if c2g_single_toks.shape == cand_to_gold.lengths.shape:
|
|
# This the most likely case.
|
|
gold_i = cand_to_gold[:]
|
|
else:
|
|
gold_i = numpy.vectorize(lambda x: cand_to_gold[int(x)][0], otypes='i')(c2g_single_toks)
|
|
|
|
# Fetch indices of all gold heads for the aligned gold tokens.
|
|
heads = numpy.asarray(heads, dtype='i')
|
|
gold_head_i = heads[gold_i]
|
|
|
|
# Select all gold tokens that are heads of the previously selected
|
|
# gold tokens (and are aligned to a single candidate token).
|
|
g2c_len_heads = gold_to_cand.lengths[gold_head_i]
|
|
g2c_len_heads = numpy.where(g2c_len_heads == 1)[0]
|
|
g2c_i = numpy.vectorize(lambda x: gold_to_cand[int(x)][0], otypes='i')(gold_head_i[g2c_len_heads]).squeeze()
|
|
|
|
# Update head/dep alignments with the above.
|
|
aligned_heads = numpy.full((self.x.length), None)
|
|
aligned_heads[c2g_single_toks[g2c_len_heads]] = g2c_i
|
|
|
|
deps = numpy.asarray(deps)
|
|
aligned_deps = numpy.full((self.x.length), None)
|
|
aligned_deps[c2g_single_toks] = deps[gold_i]
|
|
|
|
return aligned_heads.tolist(), aligned_deps.tolist()
|
|
|
|
def get_aligned_sent_starts(self):
|
|
"""Get list of SENT_START attributes aligned to the predicted tokenization.
|
|
If the reference does not have sentence starts, return a list of None values.
|
|
"""
|
|
if self.y.has_annotation("SENT_START"):
|
|
align = self.alignment.y2x
|
|
sent_starts = [False] * len(self.x)
|
|
for y_sent in self.y.sents:
|
|
x_start = int(align[y_sent.start][0])
|
|
sent_starts[x_start] = True
|
|
return sent_starts
|
|
else:
|
|
return [None] * len(self.x)
|
|
|
|
def get_aligned_spans_x2y(self, x_spans, allow_overlap=False):
|
|
return self._get_aligned_spans(self.y, x_spans, self.alignment.x2y, allow_overlap)
|
|
|
|
def get_aligned_spans_y2x(self, y_spans, allow_overlap=False):
|
|
return self._get_aligned_spans(self.x, y_spans, self.alignment.y2x, allow_overlap)
|
|
|
|
def _get_aligned_spans(self, doc, spans, align, allow_overlap):
|
|
seen = set()
|
|
output = []
|
|
for span in spans:
|
|
indices = align[span.start : span.end]
|
|
if not allow_overlap:
|
|
indices = [idx for idx in indices if idx not in seen]
|
|
if len(indices) >= 1:
|
|
aligned_span = Span(doc, indices[0], indices[-1] + 1, label=span.label)
|
|
target_text = span.text.lower().strip().replace(" ", "")
|
|
our_text = aligned_span.text.lower().strip().replace(" ", "")
|
|
if our_text == target_text:
|
|
output.append(aligned_span)
|
|
seen.update(indices)
|
|
return output
|
|
|
|
def get_aligned_ents_and_ner(self):
|
|
if not self.y.has_annotation("ENT_IOB"):
|
|
return [], [None] * len(self.x)
|
|
x_ents = self.get_aligned_spans_y2x(self.y.ents, allow_overlap=False)
|
|
# Default to 'None' for missing values
|
|
x_tags = offsets_to_biluo_tags(
|
|
self.x,
|
|
[(e.start_char, e.end_char, e.label_) for e in x_ents],
|
|
missing=None
|
|
)
|
|
# Now fill the tokens we can align to O.
|
|
O = 2 # I=1, O=2, B=3
|
|
for i, ent_iob in enumerate(self.get_aligned("ENT_IOB")):
|
|
if x_tags[i] is None:
|
|
if ent_iob == O:
|
|
x_tags[i] = "O"
|
|
elif self.x[i].is_space:
|
|
x_tags[i] = "O"
|
|
return x_ents, x_tags
|
|
|
|
def get_aligned_ner(self):
|
|
x_ents, x_tags = self.get_aligned_ents_and_ner()
|
|
return x_tags
|
|
|
|
def get_matching_ents(self, check_label=True):
|
|
"""Return entities that are shared between predicted and reference docs.
|
|
|
|
If `check_label` is True, entities must have matching labels to be
|
|
kept. Otherwise only the character indices need to match.
|
|
"""
|
|
gold = {}
|
|
for ent in self.reference.ents:
|
|
gold[(ent.start_char, ent.end_char)] = ent.label
|
|
|
|
keep = []
|
|
for ent in self.predicted.ents:
|
|
key = (ent.start_char, ent.end_char)
|
|
if key not in gold:
|
|
continue
|
|
|
|
if check_label and ent.label != gold[key]:
|
|
continue
|
|
|
|
keep.append(ent)
|
|
|
|
return keep
|
|
|
|
def to_dict(self):
|
|
return {
|
|
"doc_annotation": {
|
|
"cats": dict(self.reference.cats),
|
|
"entities": doc_to_biluo_tags(self.reference),
|
|
"spans": self._spans_to_dict(),
|
|
"links": self._links_to_dict()
|
|
},
|
|
"token_annotation": {
|
|
"ORTH": [t.text for t in self.reference],
|
|
"SPACY": [bool(t.whitespace_) for t in self.reference],
|
|
"TAG": [t.tag_ for t in self.reference],
|
|
"LEMMA": [t.lemma_ for t in self.reference],
|
|
"POS": [t.pos_ for t in self.reference],
|
|
"MORPH": [str(t.morph) for t in self.reference],
|
|
"HEAD": [t.head.i for t in self.reference],
|
|
"DEP": [t.dep_ for t in self.reference],
|
|
"SENT_START": [int(bool(t.is_sent_start)) for t in self.reference]
|
|
}
|
|
}
|
|
|
|
def _spans_to_dict(self):
|
|
span_dict = {}
|
|
for key in self.reference.spans:
|
|
span_tuples = []
|
|
for span in self.reference.spans[key]:
|
|
span_tuple = (span.start_char, span.end_char, span.label_, span.kb_id_)
|
|
span_tuples.append(span_tuple)
|
|
span_dict[key] = span_tuples
|
|
|
|
return span_dict
|
|
|
|
|
|
def _links_to_dict(self):
|
|
links = {}
|
|
for ent in self.reference.ents:
|
|
if ent.kb_id_:
|
|
links[(ent.start_char, ent.end_char)] = {ent.kb_id_: 1.0}
|
|
return links
|
|
|
|
def split_sents(self):
|
|
""" Split the token annotations into multiple Examples based on
|
|
sent_starts and return a list of the new Examples"""
|
|
if not self.reference.has_annotation("SENT_START"):
|
|
return [self]
|
|
|
|
align = self.alignment.y2x
|
|
seen_indices = set()
|
|
output = []
|
|
for y_sent in self.reference.sents:
|
|
indices = align[y_sent.start : y_sent.end]
|
|
indices = [idx for idx in indices if idx not in seen_indices]
|
|
if indices:
|
|
x_sent = self.predicted[indices[0] : indices[-1] + 1]
|
|
output.append(Example(x_sent.as_doc(), y_sent.as_doc()))
|
|
seen_indices.update(indices)
|
|
return output
|
|
|
|
property text:
|
|
def __get__(self):
|
|
return self.x.text
|
|
|
|
def __str__(self):
|
|
return str(self.to_dict())
|
|
|
|
def __repr__(self):
|
|
return str(self.to_dict())
|
|
|
|
|
|
def _annot2array(vocab, tok_annot, doc_annot):
|
|
attrs = []
|
|
values = []
|
|
|
|
for key, value in doc_annot.items():
|
|
if value:
|
|
if key in ["entities", "cats", "spans"]:
|
|
pass
|
|
elif key == "links":
|
|
ent_kb_ids = _parse_links(vocab, tok_annot["ORTH"], tok_annot["SPACY"], value)
|
|
tok_annot["ENT_KB_ID"] = ent_kb_ids
|
|
else:
|
|
raise ValueError(Errors.E974.format(obj="doc", key=key))
|
|
|
|
for key, value in tok_annot.items():
|
|
if key not in IDS:
|
|
raise ValueError(Errors.E974.format(obj="token", key=key))
|
|
elif key in ["ORTH", "SPACY"]:
|
|
continue
|
|
elif key == "HEAD":
|
|
attrs.append(key)
|
|
row = [h-i if h is not None else 0 for i, h in enumerate(value)]
|
|
elif key == "DEP":
|
|
attrs.append(key)
|
|
row = [vocab.strings.add(h) if h is not None else MISSING_DEP for h in value]
|
|
elif key == "SENT_START":
|
|
attrs.append(key)
|
|
row = [to_ternary_int(v) for v in value]
|
|
elif key == "MORPH":
|
|
attrs.append(key)
|
|
row = [vocab.morphology.add(v) for v in value]
|
|
else:
|
|
attrs.append(key)
|
|
if not all(isinstance(v, str) for v in value):
|
|
types = set([type(v) for v in value])
|
|
raise TypeError(Errors.E969.format(field=key, types=types)) from None
|
|
row = [vocab.strings.add(v) for v in value]
|
|
values.append([numpy.array(v, dtype=numpy.int32).astype(numpy.uint64) if v < 0 else v for v in row])
|
|
array = numpy.array(values, dtype=numpy.uint64)
|
|
return attrs, array.T
|
|
|
|
|
|
def _add_spans_to_doc(doc, spans_data):
|
|
if not isinstance(spans_data, dict):
|
|
raise ValueError(Errors.E879)
|
|
for key, span_list in spans_data.items():
|
|
spans = []
|
|
if not isinstance(span_list, list):
|
|
raise ValueError(Errors.E879)
|
|
for span_tuple in span_list:
|
|
if not isinstance(span_tuple, (list, tuple)) or len(span_tuple) < 2:
|
|
raise ValueError(Errors.E879)
|
|
start_char = span_tuple[0]
|
|
end_char = span_tuple[1]
|
|
label = 0
|
|
kb_id = 0
|
|
if len(span_tuple) > 2:
|
|
label = span_tuple[2]
|
|
if len(span_tuple) > 3:
|
|
kb_id = span_tuple[3]
|
|
span = doc.char_span(start_char, end_char, label=label, kb_id=kb_id)
|
|
spans.append(span)
|
|
doc.spans[key] = spans
|
|
|
|
|
|
def _add_entities_to_doc(doc, ner_data):
|
|
if ner_data is None:
|
|
return
|
|
elif ner_data == []:
|
|
doc.ents = []
|
|
elif not isinstance(ner_data, (list, tuple)):
|
|
raise ValueError(Errors.E973)
|
|
elif isinstance(ner_data[0], (list, tuple)):
|
|
return _add_entities_to_doc(
|
|
doc,
|
|
offsets_to_biluo_tags(doc, ner_data)
|
|
)
|
|
elif isinstance(ner_data[0], str) or ner_data[0] is None:
|
|
return _add_entities_to_doc(
|
|
doc,
|
|
biluo_tags_to_spans(doc, ner_data)
|
|
)
|
|
elif isinstance(ner_data[0], Span):
|
|
entities = []
|
|
missing = []
|
|
for span in ner_data:
|
|
if span.label:
|
|
entities.append(span)
|
|
else:
|
|
missing.append(span)
|
|
doc.set_ents(entities, missing=missing)
|
|
else:
|
|
raise ValueError(Errors.E973)
|
|
|
|
|
|
def _parse_example_dict_data(example_dict):
|
|
return (
|
|
example_dict["token_annotation"],
|
|
example_dict["doc_annotation"]
|
|
)
|
|
|
|
|
|
def _fix_legacy_dict_data(example_dict):
|
|
token_dict = example_dict.get("token_annotation", {})
|
|
doc_dict = example_dict.get("doc_annotation", {})
|
|
for key, value in example_dict.items():
|
|
if value is not None:
|
|
if key in ("token_annotation", "doc_annotation"):
|
|
pass
|
|
elif key == "ids":
|
|
pass
|
|
elif key in ("cats", "links", "spans"):
|
|
doc_dict[key] = value
|
|
elif key in ("ner", "entities"):
|
|
doc_dict["entities"] = value
|
|
else:
|
|
token_dict[key] = value
|
|
# Remap keys
|
|
remapping = {
|
|
"words": "ORTH",
|
|
"tags": "TAG",
|
|
"pos": "POS",
|
|
"lemmas": "LEMMA",
|
|
"deps": "DEP",
|
|
"heads": "HEAD",
|
|
"sent_starts": "SENT_START",
|
|
"morphs": "MORPH",
|
|
"spaces": "SPACY",
|
|
}
|
|
old_token_dict = token_dict
|
|
token_dict = {}
|
|
for key, value in old_token_dict.items():
|
|
if key in ("text", "ids", "brackets"):
|
|
pass
|
|
elif key in remapping.values():
|
|
token_dict[key] = value
|
|
elif key.lower() in remapping:
|
|
token_dict[remapping[key.lower()]] = value
|
|
else:
|
|
all_keys = set(remapping.values())
|
|
all_keys.update(remapping.keys())
|
|
raise KeyError(Errors.E983.format(key=key, dict="token_annotation", keys=all_keys))
|
|
text = example_dict.get("text", example_dict.get("raw"))
|
|
if _has_field(token_dict, "ORTH") and not _has_field(token_dict, "SPACY"):
|
|
token_dict["SPACY"] = _guess_spaces(text, token_dict["ORTH"])
|
|
if "HEAD" in token_dict and "SENT_START" in token_dict:
|
|
# If heads are set, we don't also redundantly specify SENT_START.
|
|
token_dict.pop("SENT_START")
|
|
logger.debug(Warnings.W092)
|
|
return {
|
|
"token_annotation": token_dict,
|
|
"doc_annotation": doc_dict
|
|
}
|
|
|
|
def _has_field(annot, field):
|
|
if field not in annot:
|
|
return False
|
|
elif annot[field] is None:
|
|
return False
|
|
elif len(annot[field]) == 0:
|
|
return False
|
|
elif all([value is None for value in annot[field]]):
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
|
|
def _parse_ner_tags(biluo_or_offsets, vocab, words, spaces):
|
|
if isinstance(biluo_or_offsets[0], (list, tuple)):
|
|
# Convert to biluo if necessary
|
|
# This is annoying but to convert the offsets we need a Doc
|
|
# that has the target tokenization.
|
|
reference = Doc(vocab, words=words, spaces=spaces)
|
|
biluo = offsets_to_biluo_tags(reference, biluo_or_offsets)
|
|
else:
|
|
biluo = biluo_or_offsets
|
|
ent_iobs = []
|
|
ent_types = []
|
|
for iob_tag in biluo_to_iob(biluo):
|
|
if iob_tag in (None, "-"):
|
|
ent_iobs.append("")
|
|
ent_types.append("")
|
|
else:
|
|
ent_iobs.append(iob_tag.split("-")[0])
|
|
if iob_tag.startswith("I") or iob_tag.startswith("B"):
|
|
ent_types.append(remove_bilu_prefix(iob_tag))
|
|
else:
|
|
ent_types.append("")
|
|
return ent_iobs, ent_types
|
|
|
|
def _parse_links(vocab, words, spaces, links):
|
|
reference = Doc(vocab, words=words, spaces=spaces)
|
|
starts = {token.idx: token.i for token in reference}
|
|
ends = {token.idx + len(token): token.i for token in reference}
|
|
ent_kb_ids = ["" for _ in reference]
|
|
|
|
for index, annot_dict in links.items():
|
|
true_kb_ids = []
|
|
for key, value in annot_dict.items():
|
|
if value == 1.0:
|
|
true_kb_ids.append(key)
|
|
if len(true_kb_ids) > 1:
|
|
raise ValueError(Errors.E980)
|
|
|
|
if len(true_kb_ids) == 1:
|
|
start_char, end_char = index
|
|
start_token = starts.get(start_char)
|
|
end_token = ends.get(end_char)
|
|
if start_token is None or end_token is None:
|
|
raise ValueError(Errors.E981)
|
|
for i in range(start_token, end_token+1):
|
|
ent_kb_ids[i] = true_kb_ids[0]
|
|
|
|
return ent_kb_ids
|
|
|
|
|
|
def _guess_spaces(text, words):
|
|
if text is None:
|
|
return None
|
|
spaces = []
|
|
text_pos = 0
|
|
# align words with text
|
|
for word in words:
|
|
try:
|
|
word_start = text[text_pos:].index(word)
|
|
except ValueError:
|
|
spaces.append(True)
|
|
continue
|
|
text_pos += word_start + len(word)
|
|
if text_pos < len(text) and text[text_pos] == " ":
|
|
spaces.append(True)
|
|
else:
|
|
spaces.append(False)
|
|
return spaces
|