mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-01 04:46:38 +03:00
93 lines
2.9 KiB
Cython
93 lines
2.9 KiB
Cython
# cython: profile=False
|
|
cimport numpy as np
|
|
from libc.string cimport memset
|
|
|
|
from ..errors import Errors
|
|
from ..morphology import Morphology
|
|
|
|
from ..morphology cimport check_feature, get_by_field, list_features
|
|
from ..typedefs cimport attr_t, hash_t
|
|
from ..vocab cimport Vocab
|
|
|
|
|
|
cdef class MorphAnalysis:
|
|
"""Control access to morphological features for a token."""
|
|
def __init__(self, Vocab vocab, features=dict()):
|
|
self.vocab = vocab
|
|
self.key = self.vocab.morphology.add(features)
|
|
analysis = <const MorphAnalysisC*>self.vocab.morphology.tags.get(self.key)
|
|
if analysis is not NULL:
|
|
self.c = analysis[0]
|
|
else:
|
|
memset(&self.c, 0, sizeof(self.c))
|
|
|
|
@classmethod
|
|
def from_id(cls, Vocab vocab, hash_t key):
|
|
"""Create a morphological analysis from a given ID."""
|
|
cdef MorphAnalysis morph = MorphAnalysis.__new__(MorphAnalysis, vocab)
|
|
morph.vocab = vocab
|
|
morph.key = key
|
|
analysis = <const MorphAnalysisC*>vocab.morphology.tags.get(key)
|
|
if analysis is not NULL:
|
|
morph.c = analysis[0]
|
|
else:
|
|
memset(&morph.c, 0, sizeof(morph.c))
|
|
return morph
|
|
|
|
def __contains__(self, feature):
|
|
"""Test whether the morphological analysis contains some feature."""
|
|
cdef attr_t feat_id = self.vocab.strings.as_int(feature)
|
|
return check_feature(&self.c, feat_id)
|
|
|
|
def __iter__(self):
|
|
"""Iterate over the features in the analysis."""
|
|
cdef attr_t feature
|
|
for feature in list_features(&self.c):
|
|
yield self.vocab.strings[feature]
|
|
|
|
def __len__(self):
|
|
"""The number of features in the analysis."""
|
|
return self.c.length
|
|
|
|
def __hash__(self):
|
|
return self.key
|
|
|
|
def __eq__(self, other):
|
|
if isinstance(other, str):
|
|
raise ValueError(Errors.E977)
|
|
return self.key == other.key
|
|
|
|
def __ne__(self, other):
|
|
return self.key != other.key
|
|
|
|
def get(self, field, default=None):
|
|
"""Retrieve feature values by field."""
|
|
cdef attr_t field_id = self.vocab.strings.as_int(field)
|
|
cdef np.ndarray results = get_by_field(&self.c, field_id)
|
|
if len(results) == 0:
|
|
if default is None:
|
|
default = []
|
|
return default
|
|
features = [self.vocab.strings[result] for result in results]
|
|
return [f.split(Morphology.FIELD_SEP)[1] for f in features]
|
|
|
|
def to_json(self):
|
|
"""Produce a json serializable representation as a UD FEATS-style
|
|
string.
|
|
"""
|
|
morph_string = self.vocab.strings[self.c.key]
|
|
if morph_string == self.vocab.morphology.EMPTY_MORPH:
|
|
return ""
|
|
return morph_string
|
|
|
|
def to_dict(self):
|
|
"""Produce a dict representation.
|
|
"""
|
|
return self.vocab.morphology.feats_to_dict(self.to_json())
|
|
|
|
def __str__(self):
|
|
return self.to_json()
|
|
|
|
def __repr__(self):
|
|
return self.to_json()
|