spaCy/spacy/pipeline/textcat.py
Ines Montani 43b960c01b
Refactor pipeline components, config and language data (#5759)
* Update with WIP

* Update with WIP

* Update with pipeline serialization

* Update types and pipe factories

* Add deep merge, tidy up and add tests

* Fix pipe creation from config

* Don't validate default configs on load

* Update spacy/language.py

Co-authored-by: Ines Montani <ines@ines.io>

* Adjust factory/component meta error

* Clean up factory args and remove defaults

* Add test for failing empty dict defaults

* Update pipeline handling and methods

* provide KB as registry function instead of as object

* small change in test to make functionality more clear

* update example script for EL configuration

* Fix typo

* Simplify test

* Simplify test

* splitting pipes.pyx into separate files

* moving default configs to each component file

* fix batch_size type

* removing default values from component constructors where possible (TODO: test 4725)

* skip instead of xfail

* Add test for config -> nlp with multiple instances

* pipeline.pipes -> pipeline.pipe

* Tidy up, document, remove kwargs

* small cleanup/generalization for Tok2VecListener

* use DEFAULT_UPSTREAM field

* revert to avoid circular imports

* Fix tests

* Replace deprecated arg

* Make model dirs require config

* fix pickling of keyword-only arguments in constructor

* WIP: clean up and integrate full config

* Add helper to handle function args more reliably

Now also includes keyword-only args

* Fix config composition and serialization

* Improve config debugging and add visual diff

* Remove unused defaults and fix type

* Remove pipeline and factories from meta

* Update spacy/default_config.cfg

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/default_config.cfg

* small UX edits

* avoid printing stack trace for debug CLI commands

* Add support for language-specific factories

* specify the section of the config which holds the model to debug

* WIP: add Language.from_config

* Update with language data refactor WIP

* Auto-format

* Add backwards-compat handling for Language.factories

* Update morphologizer.pyx

* Fix morphologizer

* Update and simplify lemmatizers

* Fix Japanese tests

* Port over tagger changes

* Fix Chinese and tests

* Update to latest Thinc

* WIP: xfail first Russian lemmatizer test

* Fix component-specific overrides

* fix nO for output layers in debug_model

* Fix default value

* Fix tests and don't pass objects in config

* Fix deep merging

* Fix lemma lookup data registry

Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed)

* Add types

* Add Vocab.from_config

* Fix typo

* Fix tests

* Make config copying more elegant

* Fix pipe analysis

* Fix lemmatizers and is_base_form

* WIP: move language defaults to config

* Fix morphology type

* Fix vocab

* Remove comment

* Update to latest Thinc

* Add morph rules to config

* Tidy up

* Remove set_morphology option from tagger factory

* Hack use_gpu

* Move [pipeline] to top-level block and make [nlp.pipeline] list

Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them

* Fix use_gpu and resume in CLI

* Auto-format

* Remove resume from config

* Fix formatting and error

* [pipeline] -> [components]

* Fix types

* Fix tagger test: requires set_morphology?

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 13:42:59 +02:00

253 lines
8.3 KiB
Python

from typing import Iterable, Tuple, Optional, Dict, List, Callable
from thinc.api import get_array_module, Model, Optimizer, set_dropout_rate, Config
import numpy
from .pipe import Pipe
from ..language import Language
from ..gold import Example
from ..errors import Errors
from .. import util
from ..tokens import Doc
from ..vocab import Vocab
default_model_config = """
[model]
@architectures = "spacy.TextCat.v1"
exclusive_classes = false
pretrained_vectors = null
width = 64
conv_depth = 2
embed_size = 2000
window_size = 1
ngram_size = 1
dropout = null
"""
DEFAULT_TEXTCAT_MODEL = Config().from_str(default_model_config)["model"]
bow_model_config = """
[model]
@architectures = "spacy.TextCatBOW.v1"
exclusive_classes = false
ngram_size: 1
no_output_layer: false
"""
cnn_model_config = """
[model]
@architectures = "spacy.TextCatCNN.v1"
exclusive_classes = false
[model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 96
depth = 4
embed_size = 2000
window_size = 1
maxout_pieces = 3
subword_features = true
dropout = null
"""
@Language.factory(
"textcat",
assigns=["doc.cats"],
default_config={"labels": [], "model": DEFAULT_TEXTCAT_MODEL},
)
def make_textcat(
nlp: Language, name: str, model: Model, labels: Iterable[str]
) -> "TextCategorizer":
return TextCategorizer(nlp.vocab, model, name, labels=labels)
class TextCategorizer(Pipe):
"""Pipeline component for text classification.
DOCS: https://spacy.io/api/textcategorizer
"""
def __init__(
self,
vocab: Vocab,
model: Model,
name: str = "textcat",
*,
labels: Iterable[str],
) -> None:
self.vocab = vocab
self.model = model
self.name = name
self._rehearsal_model = None
cfg = {"labels": labels}
self.cfg = dict(cfg)
@property
def labels(self) -> Tuple[str]:
return tuple(self.cfg.setdefault("labels", []))
def require_labels(self) -> None:
"""Raise an error if the component's model has no labels defined."""
if not self.labels:
raise ValueError(Errors.E143.format(name=self.name))
@labels.setter
def labels(self, value: Iterable[str]) -> None:
self.cfg["labels"] = tuple(value)
def pipe(self, stream, batch_size=128):
for docs in util.minibatch(stream, size=batch_size):
scores = self.predict(docs)
self.set_annotations(docs, scores)
yield from docs
def predict(self, docs: Iterable[Doc]):
tensors = [doc.tensor for doc in docs]
if not any(len(doc) for doc in docs):
# Handle cases where there are no tokens in any docs.
xp = get_array_module(tensors)
scores = xp.zeros((len(docs), len(self.labels)))
return scores
scores = self.model.predict(docs)
scores = self.model.ops.asarray(scores)
return scores
def set_annotations(self, docs: Iterable[Doc], scores) -> None:
for i, doc in enumerate(docs):
for j, label in enumerate(self.labels):
doc.cats[label] = float(scores[i, j])
def update(
self,
examples: Iterable[Example],
*,
drop: float = 0.0,
set_annotations: bool = False,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
if losses is None:
losses = {}
losses.setdefault(self.name, 0.0)
try:
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
# Handle cases where there are no tokens in any docs.
return losses
except AttributeError:
types = set([type(eg) for eg in examples])
raise TypeError(
Errors.E978.format(name="TextCategorizer", method="update", types=types)
)
set_dropout_rate(self.model, drop)
scores, bp_scores = self.model.begin_update([eg.predicted for eg in examples])
loss, d_scores = self.get_loss(examples, scores)
bp_scores(d_scores)
if sgd is not None:
self.model.finish_update(sgd)
losses[self.name] += loss
if set_annotations:
docs = [eg.predicted for eg in examples]
self.set_annotations(docs, scores=scores)
return losses
def rehearse(
self,
examples: Iterable[Example],
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> None:
if self._rehearsal_model is None:
return
try:
docs = [eg.predicted for eg in examples]
except AttributeError:
types = set([type(eg) for eg in examples])
err = Errors.E978.format(
name="TextCategorizer", method="rehearse", types=types
)
raise TypeError(err)
if not any(len(doc) for doc in docs):
# Handle cases where there are no tokens in any docs.
return
set_dropout_rate(self.model, drop)
scores, bp_scores = self.model.begin_update(docs)
target = self._rehearsal_model(examples)
gradient = scores - target
bp_scores(gradient)
if sgd is not None:
self.model.finish_update(sgd)
if losses is not None:
losses.setdefault(self.name, 0.0)
losses[self.name] += (gradient ** 2).sum()
def _examples_to_truth(
self, examples: List[Example]
) -> Tuple[numpy.ndarray, numpy.ndarray]:
truths = numpy.zeros((len(examples), len(self.labels)), dtype="f")
not_missing = numpy.ones((len(examples), len(self.labels)), dtype="f")
for i, eg in enumerate(examples):
for j, label in enumerate(self.labels):
if label in eg.reference.cats:
truths[i, j] = eg.reference.cats[label]
else:
not_missing[i, j] = 0.0
truths = self.model.ops.asarray(truths)
return truths, not_missing
def get_loss(self, examples: Iterable[Example], scores) -> Tuple[float, float]:
truths, not_missing = self._examples_to_truth(examples)
not_missing = self.model.ops.asarray(not_missing)
d_scores = (scores - truths) / scores.shape[0]
d_scores *= not_missing
mean_square_error = (d_scores ** 2).sum(axis=1).mean()
return float(mean_square_error), d_scores
def add_label(self, label: str) -> int:
if not isinstance(label, str):
raise ValueError(Errors.E187)
if label in self.labels:
return 0
if self.model.has_dim("nO"):
# This functionality was available previously, but was broken.
# The problem is that we resize the last layer, but the last layer
# is actually just an ensemble. We're not resizing the child layers
# - a huge problem.
raise ValueError(Errors.E116)
# smaller = self.model._layers[-1]
# larger = Linear(len(self.labels)+1, smaller.nI)
# copy_array(larger.W[:smaller.nO], smaller.W)
# copy_array(larger.b[:smaller.nO], smaller.b)
# self.model._layers[-1] = larger
self.labels = tuple(list(self.labels) + [label])
return 1
def begin_training(
self,
get_examples: Callable = lambda: [],
pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None,
sgd: Optional[Optimizer] = None,
) -> Optimizer:
# TODO: begin_training is not guaranteed to see all data / labels ?
examples = list(get_examples())
for example in examples:
try:
y = example.y
except AttributeError:
err = Errors.E978.format(
name="TextCategorizer", method="update", types=type(example)
)
raise TypeError(err)
for cat in y.cats:
self.add_label(cat)
self.require_labels()
docs = [Doc(Vocab(), words=["hello"])]
truths, _ = self._examples_to_truth(examples)
self.set_output(len(self.labels))
util.link_vectors_to_models(self.vocab)
self.model.initialize(X=docs, Y=truths)
if sgd is None:
sgd = self.create_optimizer()
return sgd