spaCy/spacy/pipeline/coref.py
Paul O'Leary McCann 8eadf3781b Training runs now
Evaluation needs fixing, and code still needs cleanup.
2022-03-14 19:02:17 +09:00

423 lines
14 KiB
Python

from typing import Iterable, Tuple, Optional, Dict, Callable, Any, List
import warnings
from thinc.types import Floats2d, Ints2d
from thinc.api import Model, Config, Optimizer, CategoricalCrossentropy
from thinc.api import set_dropout_rate
from itertools import islice
from statistics import mean
from .trainable_pipe import TrainablePipe
from ..language import Language
from ..training import Example, validate_examples, validate_get_examples
from ..errors import Errors
from ..scorer import Scorer
from ..tokens import Doc
from ..vocab import Vocab
from ..ml.models.coref_util import (
create_gold_scores,
MentionClusters,
create_head_span_idxs,
get_clusters_from_doc,
get_predicted_clusters,
DEFAULT_CLUSTER_PREFIX,
doc2clusters,
)
from ..coref_scorer import Evaluator, get_cluster_info, b_cubed, muc, ceafe
# TODO remove this - kept for reference for now
old_default_config = """
[model]
@architectures = "spacy.Coref.v1"
max_span_width = 20
mention_limit = 3900
mention_limit_ratio = 0.4
dropout = 0.3
hidden = 1000
antecedent_limit = 50
[model.get_mentions]
@misc = "spacy.CorefCandidateGenerator.v1"
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v1"
width = 64
rows = [2000, 2000, 1000, 1000, 1000, 1000]
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
include_static_vectors = false
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
depth = 2
"""
default_config = """
[model]
@architectures = "spacy.WLCoref.v1"
embedding_size = 20
hidden_size = 1024
n_hidden_layers = 1
dropout = 0.3
rough_k = 50
a_scoring_batch_size = 512
sp_embedding_size = 64
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v1"
width = 64
rows = [2000, 2000, 1000, 1000, 1000, 1000]
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
include_static_vectors = false
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
depth = 2
"""
DEFAULT_MODEL = Config().from_str(default_config)["model"]
DEFAULT_CLUSTERS_PREFIX = "coref_clusters"
@Language.factory(
"coref",
assigns=["doc.spans"],
requires=["doc.spans"],
default_config={
"model": DEFAULT_MODEL,
"span_cluster_prefix": DEFAULT_CLUSTER_PREFIX,
},
default_score_weights={"coref_f": 1.0, "coref_p": None, "coref_r": None},
)
def make_coref(
nlp: Language,
name: str,
model,
span_cluster_prefix: str = "coref",
) -> "CoreferenceResolver":
"""Create a CoreferenceResolver component."""
return CoreferenceResolver(
nlp.vocab, model, name, span_cluster_prefix=span_cluster_prefix
)
class CoreferenceResolver(TrainablePipe):
"""Pipeline component for coreference resolution.
DOCS: https://spacy.io/api/coref (TODO)
"""
def __init__(
self,
vocab: Vocab,
model: Model,
name: str = "coref",
*,
span_mentions: str = "coref_mentions",
span_cluster_prefix: str,
) -> None:
"""Initialize a coreference resolution component.
vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name, used to add entries to the
losses during training.
span_mentions (str): Key in doc.spans where the candidate coref mentions
are stored in.
span_cluster_prefix (str): Prefix for the key in doc.spans to store the
coref clusters in.
DOCS: https://spacy.io/api/coref#init (TODO)
"""
self.vocab = vocab
self.model = model
self.name = name
self.span_mentions = span_mentions
self.span_cluster_prefix = span_cluster_prefix
self._rehearsal_model = None
self.loss = CategoricalCrossentropy()
self.cfg = {}
def predict(self, docs: Iterable[Doc]) -> List[MentionClusters]:
"""Apply the pipeline's model to a batch of docs, without modifying them.
docs (Iterable[Doc]): The documents to predict.
RETURNS: The models prediction for each document.
DOCS: https://spacy.io/api/coref#predict (TODO)
"""
scores, idxs = self.model.predict(docs)
# idxs is a list of mentions (start / end idxs)
# each item in scores includes scores and a mapping from scores to mentions
ant_idxs = idxs
#TODO batching
xp = self.model.ops.xp
starts = xp.arange(0, len(docs[0]))
ends = xp.arange(0, len(docs[0])) + 1
predicted = get_predicted_clusters(xp, starts, ends, ant_idxs, scores)
clusters_by_doc = [predicted]
return clusters_by_doc
def set_annotations(self, docs: Iterable[Doc], clusters_by_doc) -> None:
"""Modify a batch of Doc objects, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
clusters: The span clusters, produced by CoreferenceResolver.predict.
DOCS: https://spacy.io/api/coref#set_annotations (TODO)
"""
if len(docs) != len(clusters_by_doc):
raise ValueError(
"Found coref clusters incompatible with the "
"documents provided to the 'coref' component. "
"This is likely a bug in spaCy."
)
for doc, clusters in zip(docs, clusters_by_doc):
for ii, cluster in enumerate(clusters):
key = self.span_cluster_prefix + "_" + str(ii)
if key in doc.spans:
raise ValueError(
"Found coref clusters incompatible with the "
"documents provided to the 'coref' component. "
"This is likely a bug in spaCy."
)
doc.spans[key] = []
for mention in cluster:
doc.spans[key].append(doc[mention[0] : mention[1]])
def update(
self,
examples: Iterable[Example],
*,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
"""Learn from a batch of documents and gold-standard information,
updating the pipe's model. Delegates to predict and get_loss.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
sgd (thinc.api.Optimizer): The optimizer.
losses (Dict[str, float]): Optional record of the loss during training.
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/coref#update (TODO)
"""
if losses is None:
losses = {}
losses.setdefault(self.name, 0.0)
validate_examples(examples, "CoreferenceResolver.update")
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
# Handle cases where there are no tokens in any docs.
return losses
set_dropout_rate(self.model, drop)
inputs = [example.predicted for example in examples]
preds, backprop = self.model.begin_update(inputs)
score_matrix, mention_idx = preds
loss, d_scores = self.get_loss(examples, score_matrix, mention_idx)
# TODO check shape here
backprop((d_scores, mention_idx))
if sgd is not None:
self.finish_update(sgd)
losses[self.name] += loss
return losses
def rehearse(
self,
examples: Iterable[Example],
*,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
"""Perform a "rehearsal" update from a batch of data. Rehearsal updates
teach the current model to make predictions similar to an initial model,
to try to address the "catastrophic forgetting" problem. This feature is
experimental.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
sgd (thinc.api.Optimizer): The optimizer.
losses (Dict[str, float]): Optional record of the loss during training.
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/coref#rehearse (TODO)
"""
if losses is not None:
losses.setdefault(self.name, 0.0)
if self._rehearsal_model is None:
return losses
validate_examples(examples, "CoreferenceResolver.rehearse")
docs = [eg.predicted for eg in examples]
if not any(len(doc) for doc in docs):
# Handle cases where there are no tokens in any docs.
return losses
set_dropout_rate(self.model, drop)
scores, bp_scores = self.model.begin_update(docs)
# TODO below
target = self._rehearsal_model(examples)
gradient = scores - target
bp_scores(gradient)
if sgd is not None:
self.finish_update(sgd)
if losses is not None:
losses[self.name] += (gradient ** 2).sum()
return losses
def add_label(self, label: str) -> int:
"""Technically this method should be implemented from TrainablePipe,
but it is not relevant for the coref component.
"""
raise NotImplementedError(
Errors.E931.format(
parent="CoreferenceResolver", method="add_label", name=self.name
)
)
def get_loss(
self,
examples: Iterable[Example],
score_matrix: List[Tuple[Floats2d, Ints2d]],
mention_idx: Ints2d,
):
"""Find the loss and gradient of loss for the batch of documents and
their predicted scores.
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/coref#get_loss (TODO)
"""
ops = self.model.ops
xp = ops.xp
offset = 0
gradients = []
total_loss = 0
#TODO change this
# 1. do not handle batching (add it back later)
# 2. don't do index conversion (no mentions, just word indices)
# 3. convert words to spans (if necessary) in gold and predictions
# massage score matrix to be shaped correctly
score_matrix = [ (score_matrix, None) ]
for example, (cscores, cidx) in zip(examples, score_matrix):
ll = cscores.shape[0]
hi = offset + ll
clusters = get_clusters_from_doc(example.reference)
span_idxs = create_head_span_idxs(ops, len(example.predicted))
gscores = create_gold_scores(span_idxs, clusters)
gscores = ops.asarray2f(gscores)
#top_gscores = xp.take_along_axis(gscores, cidx, axis=1)
top_gscores = xp.take_along_axis(gscores, mention_idx, axis=1)
# now add the placeholder
gold_placeholder = ~top_gscores.any(axis=1).T
gold_placeholder = xp.expand_dims(gold_placeholder, 1)
top_gscores = xp.concatenate((gold_placeholder, top_gscores), 1)
# boolean to float
top_gscores = ops.asarray2f(top_gscores)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=RuntimeWarning)
log_marg = ops.softmax(cscores + ops.xp.log(top_gscores), axis=1)
log_norm = ops.softmax(cscores, axis=1)
grad = log_norm - log_marg
gradients.append((grad, cidx))
total_loss += float((grad ** 2).sum())
offset = hi
# Undo the wrapping
gradients = gradients[0][0]
return total_loss, gradients
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
nlp: Optional[Language] = None,
) -> None:
"""Initialize the pipe for training, using a representative set
of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
nlp (Language): The current nlp object the component is part of.
DOCS: https://spacy.io/api/coref#initialize (TODO)
"""
validate_get_examples(get_examples, "CoreferenceResolver.initialize")
X = []
Y = []
for ex in islice(get_examples(), 2):
X.append(ex.predicted)
Y.append(ex.reference)
assert len(X) > 0, Errors.E923.format(name=self.name)
self.model.initialize(X=X, Y=Y)
# TODO This mirrors the evaluation used in prior work, but we don't want to
# include this in the final release. The metrics all have fundamental
# issues and the current implementation requires scipy.
def score(self, examples, **kwargs):
"""Score a batch of examples."""
# NOTE traditionally coref uses the average of b_cubed, muc, and ceaf.
# we need to handle the average ourselves.
scores = []
for metric in (b_cubed, muc, ceafe):
evaluator = Evaluator(metric)
for ex in examples:
p_clusters = doc2clusters(ex.predicted, self.span_cluster_prefix)
g_clusters = doc2clusters(ex.reference, self.span_cluster_prefix)
cluster_info = get_cluster_info(p_clusters, g_clusters)
evaluator.update(cluster_info)
score = {
"coref_f": evaluator.get_f1(),
"coref_p": evaluator.get_precision(),
"coref_r": evaluator.get_recall(),
}
scores.append(score)
out = {}
for field in ("f", "p", "r"):
fname = f"coref_{field}"
out[fname] = mean([ss[fname] for ss in scores])
return out