mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-24 16:24:16 +03:00
8c29268749
* Update errors * Remove beam for now (maybe) Remove beam_utils Update setup.py Remove beam * Remove GoldParse WIP on removing goldparse Get ArcEager compiling after GoldParse excise Update setup.py Get spacy.syntax compiling after removing GoldParse Rename NewExample -> Example and clean up Clean html files Start updating tests Update Morphologizer * fix error numbers * fix merge conflict * informative error when calling to_array with wrong field * fix error catching * fixing language and scoring tests * start testing get_aligned * additional tests for new get_aligned function * Draft create_gold_state for arc_eager oracle * Fix import * Fix import * Remove TokenAnnotation code from nonproj * fixing NER one-to-many alignment * Fix many-to-one IOB codes * fix test for misaligned * attempt to fix cases with weird spaces * fix spaces * test_gold_biluo_different_tokenization works * allow None as BILUO annotation * fixed some tests + WIP roundtrip unit test * add spaces to json output format * minibatch utiltiy can deal with strings, docs or examples * fix augment (needs further testing) * various fixes in scripts - needs to be further tested * fix test_cli * cleanup * correct silly typo * add support for MORPH in to/from_array, fix morphologizer overfitting test * fix tagger * fix entity linker * ensure test keeps working with non-linked entities * pipe() takes docs, not examples * small bug fix * textcat bugfix * throw informative error when running the components with the wrong type of objects * fix parser tests to work with example (most still failing) * fix BiluoPushDown parsing entities * small fixes * bugfix tok2vec * fix renames and simple_ner labels * various small fixes * prevent writing dummy values like deps because that could interfer with sent_start values * fix the fix * implement split_sent with aligned SENT_START attribute * test for split sentences with various alignment issues, works * Return ArcEagerGoldParse from ArcEager * Update parser and NER gold stuff * Draft new GoldCorpus class * add links to to_dict * clean up * fix test checking for variants * Fix oracles * Start updating converters * Move converters under spacy.gold * Move things around * Fix naming * Fix name * Update converter to produce DocBin * Update converters * Allow DocBin to take list of Doc objects. * Make spacy convert output docbin * Fix import * Fix docbin * Fix compile in ArcEager * Fix import * Serialize all attrs by default * Update converter * Remove jsonl converter * Add json2docs converter * Draft Corpus class for DocBin * Work on train script * Update Corpus * Update DocBin * Allocate Doc before starting to add words * Make doc.from_array several times faster * Update train.py * Fix Corpus * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests * Skip tests that cause crashes * Skip test causing segfault * Remove GoldCorpus * Update imports * Update after removing GoldCorpus * Fix module name of corpus * Fix mimport * Work on parser oracle * Update arc_eager oracle * Restore ArcEager.get_cost function * Update transition system * Update test_arc_eager_oracle * Remove beam test * Update test * Unskip * Unskip tests * add links to to_dict * clean up * fix test checking for variants * Allow DocBin to take list of Doc objects. * Fix compile in ArcEager * Serialize all attrs by default Move converters under spacy.gold Move things around Fix naming Fix name Update converter to produce DocBin Update converters Make spacy convert output docbin Fix import Fix docbin Fix import Update converter Remove jsonl converter Add json2docs converter * Allocate Doc before starting to add words * Make doc.from_array several times faster * Start updating converters * Work on train script * Draft Corpus class for DocBin Update Corpus Fix Corpus * Update DocBin Add missing strings when serializing * Update train.py * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests Skip tests that cause crashes Skip test causing segfault * Remove GoldCorpus Update imports Update after removing GoldCorpus Fix module name of corpus Fix mimport * Work on parser oracle Update arc_eager oracle Restore ArcEager.get_cost function Update transition system * Update tests Remove beam test Update test Unskip Unskip tests * Add get_aligned_parse method in Example Fix Example.get_aligned_parse * Add kwargs to Corpus.dev_dataset to match train_dataset * Update nonproj * Use get_aligned_parse in ArcEager * Add another arc-eager oracle test * Remove Example.doc property Remove Example.doc Remove Example.doc Remove Example.doc Remove Example.doc * Update ArcEager oracle Fix Break oracle * Debugging * Fix Corpus * Fix eg.doc * Format * small fixes * limit arg for Corpus * fix test_roundtrip_docs_to_docbin * fix test_make_orth_variants * fix add_label test * Update tests * avoid writing temp dir in json2docs, fixing 4402 test * Update test * Add missing costs to NER oracle * Update test * Work on Example.get_aligned_ner method * Clean up debugging * Xfail tests * Remove prints * Remove print * Xfail some tests * Replace unseen labels for parser * Update test * Update test * Xfail test * Fix Corpus * fix imports * fix docs_to_json * various small fixes * cleanup * Support gold_preproc in Corpus * Support gold_preproc * Pass gold_preproc setting into corpus * Remove debugging * Fix gold_preproc * Fix json2docs converter * Fix convert command * Fix flake8 * Fix import * fix output_dir (converted to Path by typer) * fix var * bugfix: update states after creating golds to avoid out of bounds indexing * Improve efficiency of ArEager oracle * pull merge_sent into iob2docs to avoid Doc creation for each line * fix asserts * bugfix excl Span.end in iob2docs * Support max_length in Corpus * Fix arc_eager oracle * Filter out uannotated sentences in NER * Remove debugging in parser * Simplify NER alignment * Fix conversion of NER data * Fix NER init_gold_batch * Tweak efficiency of precomputable affine * Update onto-json default * Update gold test for NER * Fix parser test * Update test * Add NER data test * Fix convert for single file * Fix test * Hack scorer to avoid evaluating non-nered data * Fix handling of NER data in Example * Output unlabelled spans from O biluo tags in iob_utils * Fix unset variable * Return kept examples from init_gold_batch * Return examples from init_gold_batch * Dont return Example from init_gold_batch * Set spaces on gold doc after conversion * Add test * Fix spaces reading * Improve NER alignment * Improve handling of missing values in NER * Restore the 'cutting' in parser training * Add assertion * Print epochs * Restore random cuts in parser/ner training * Implement Doc.copy * Implement Example.copy * Copy examples at the start of Language.update * Don't unset example docs * Tweak parser model slightly * attempt to fix _guess_spaces * _add_entities_to_doc first, so that links don't get overwritten * fixing get_aligned_ner for one-to-many * fix indexing into x_text * small fix biluo_tags_from_offsets * Add onto-ner config * Simplify NER alignment * Fix NER scoring for partially annotated documents * fix indexing into x_text * fix test_cli failing tests by ignoring spans in doc.ents with empty label * Fix limit * Improve NER alignment * Fix count_train * Remove print statement * fix tests, we're not having nothing but None * fix clumsy fingers * Fix tests * Fix doc.ents * Remove empty docs in Corpus and improve limit * Update config Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
1265 lines
48 KiB
Python
1265 lines
48 KiB
Python
import random
|
|
import itertools
|
|
import weakref
|
|
import functools
|
|
from contextlib import contextmanager
|
|
from copy import copy, deepcopy
|
|
from pathlib import Path
|
|
import warnings
|
|
|
|
from thinc.api import get_current_ops, Config
|
|
import srsly
|
|
import multiprocessing as mp
|
|
from itertools import chain, cycle
|
|
|
|
from .tokenizer import Tokenizer
|
|
from .tokens.underscore import Underscore
|
|
from .vocab import Vocab
|
|
from .lemmatizer import Lemmatizer
|
|
from .lookups import Lookups
|
|
from .pipe_analysis import analyze_pipes, analyze_all_pipes, validate_attrs
|
|
from .pipe_analysis import count_pipeline_interdependencies
|
|
from .gold import Example
|
|
from .scorer import Scorer
|
|
from .util import link_vectors_to_models, create_default_optimizer, registry
|
|
from .attrs import IS_STOP, LANG, NORM
|
|
from .lang.punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
|
|
from .lang.punctuation import TOKENIZER_INFIXES
|
|
from .lang.tokenizer_exceptions import TOKEN_MATCH, URL_MATCH
|
|
from .lang.norm_exceptions import BASE_NORMS
|
|
from .lang.tag_map import TAG_MAP
|
|
from .tokens import Doc
|
|
from .lang.lex_attrs import LEX_ATTRS, is_stop
|
|
from .errors import Errors, Warnings
|
|
from . import util
|
|
from . import about
|
|
|
|
|
|
ENABLE_PIPELINE_ANALYSIS = False
|
|
|
|
|
|
class BaseDefaults(object):
|
|
@classmethod
|
|
def create_lemmatizer(cls, nlp=None, lookups=None):
|
|
if lookups is None:
|
|
lookups = cls.create_lookups(nlp=nlp)
|
|
return Lemmatizer(lookups=lookups)
|
|
|
|
@classmethod
|
|
def create_lookups(cls, nlp=None):
|
|
root = util.get_module_path(cls)
|
|
filenames = {name: root / filename for name, filename in cls.resources}
|
|
if LANG in cls.lex_attr_getters:
|
|
lang = cls.lex_attr_getters[LANG](None)
|
|
if lang in util.registry.lookups:
|
|
filenames.update(util.registry.lookups.get(lang))
|
|
lookups = Lookups()
|
|
for name, filename in filenames.items():
|
|
data = util.load_language_data(filename)
|
|
lookups.add_table(name, data)
|
|
return lookups
|
|
|
|
@classmethod
|
|
def create_vocab(cls, nlp=None):
|
|
lookups = cls.create_lookups(nlp)
|
|
lemmatizer = cls.create_lemmatizer(nlp, lookups=lookups)
|
|
lex_attr_getters = dict(cls.lex_attr_getters)
|
|
# This is messy, but it's the minimal working fix to Issue #639.
|
|
lex_attr_getters[IS_STOP] = functools.partial(is_stop, stops=cls.stop_words)
|
|
vocab = Vocab(
|
|
lex_attr_getters=lex_attr_getters,
|
|
tag_map=cls.tag_map,
|
|
lemmatizer=lemmatizer,
|
|
lookups=lookups,
|
|
)
|
|
vocab.lex_attr_getters[NORM] = util.add_lookups(
|
|
vocab.lex_attr_getters.get(NORM, LEX_ATTRS[NORM]),
|
|
BASE_NORMS,
|
|
vocab.lookups.get_table("lexeme_norm"),
|
|
)
|
|
for tag_str, exc in cls.morph_rules.items():
|
|
for orth_str, attrs in exc.items():
|
|
vocab.morphology.add_special_case(tag_str, orth_str, attrs)
|
|
return vocab
|
|
|
|
@classmethod
|
|
def create_tokenizer(cls, nlp=None):
|
|
rules = cls.tokenizer_exceptions
|
|
token_match = cls.token_match
|
|
url_match = cls.url_match
|
|
prefix_search = (
|
|
util.compile_prefix_regex(cls.prefixes).search if cls.prefixes else None
|
|
)
|
|
suffix_search = (
|
|
util.compile_suffix_regex(cls.suffixes).search if cls.suffixes else None
|
|
)
|
|
infix_finditer = (
|
|
util.compile_infix_regex(cls.infixes).finditer if cls.infixes else None
|
|
)
|
|
vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
|
|
return Tokenizer(
|
|
vocab,
|
|
rules=rules,
|
|
prefix_search=prefix_search,
|
|
suffix_search=suffix_search,
|
|
infix_finditer=infix_finditer,
|
|
token_match=token_match,
|
|
url_match=url_match,
|
|
)
|
|
|
|
pipe_names = ["tagger", "parser", "ner"]
|
|
token_match = TOKEN_MATCH
|
|
url_match = URL_MATCH
|
|
prefixes = tuple(TOKENIZER_PREFIXES)
|
|
suffixes = tuple(TOKENIZER_SUFFIXES)
|
|
infixes = tuple(TOKENIZER_INFIXES)
|
|
tag_map = dict(TAG_MAP)
|
|
tokenizer_exceptions = {}
|
|
stop_words = set()
|
|
morph_rules = {}
|
|
lex_attr_getters = LEX_ATTRS
|
|
syntax_iterators = {}
|
|
resources = {}
|
|
writing_system = {"direction": "ltr", "has_case": True, "has_letters": True}
|
|
single_orth_variants = []
|
|
paired_orth_variants = []
|
|
|
|
|
|
class Language(object):
|
|
"""A text-processing pipeline. Usually you'll load this once per process,
|
|
and pass the instance around your application.
|
|
|
|
Defaults (class): Settings, data and factory methods for creating the `nlp`
|
|
object and processing pipeline.
|
|
lang (str): Two-letter language ID, i.e. ISO code.
|
|
|
|
DOCS: https://spacy.io/api/language
|
|
"""
|
|
|
|
Defaults = BaseDefaults
|
|
lang = None
|
|
|
|
factories = {"tokenizer": lambda nlp: nlp.Defaults.create_tokenizer(nlp)}
|
|
|
|
def __init__(
|
|
self,
|
|
vocab=True,
|
|
make_doc=True,
|
|
max_length=10 ** 6,
|
|
meta={},
|
|
config=None,
|
|
**kwargs,
|
|
):
|
|
"""Initialise a Language object.
|
|
|
|
vocab (Vocab): A `Vocab` object. If `True`, a vocab is created via
|
|
`Language.Defaults.create_vocab`.
|
|
make_doc (callable): A function that takes text and returns a `Doc`
|
|
object. Usually a `Tokenizer`.
|
|
meta (dict): Custom meta data for the Language class. Is written to by
|
|
models to add model meta data.
|
|
config (Config): Configuration data for creating the pipeline components.
|
|
max_length (int) :
|
|
Maximum number of characters in a single text. The current v2 models
|
|
may run out memory on extremely long texts, due to large internal
|
|
allocations. You should segment these texts into meaningful units,
|
|
e.g. paragraphs, subsections etc, before passing them to spaCy.
|
|
Default maximum length is 1,000,000 characters (1mb). As a rule of
|
|
thumb, if all pipeline components are enabled, spaCy's default
|
|
models currently requires roughly 1GB of temporary memory per
|
|
100,000 characters in one text.
|
|
RETURNS (Language): The newly constructed object.
|
|
"""
|
|
user_factories = util.registry.factories.get_all()
|
|
self.factories.update(user_factories)
|
|
self._meta = dict(meta)
|
|
self._config = config
|
|
if not self._config:
|
|
self._config = Config()
|
|
self._path = None
|
|
if vocab is True:
|
|
factory = self.Defaults.create_vocab
|
|
vocab = factory(self, **meta.get("vocab", {}))
|
|
if vocab.vectors.name is None:
|
|
vocab.vectors.name = meta.get("vectors", {}).get("name")
|
|
else:
|
|
if (self.lang and vocab.lang) and (self.lang != vocab.lang):
|
|
raise ValueError(Errors.E150.format(nlp=self.lang, vocab=vocab.lang))
|
|
self.vocab = vocab
|
|
if make_doc is True:
|
|
factory = self.Defaults.create_tokenizer
|
|
make_doc = factory(self, **meta.get("tokenizer", {}))
|
|
self.tokenizer = make_doc
|
|
self.pipeline = []
|
|
self.max_length = max_length
|
|
self._optimizer = None
|
|
|
|
@property
|
|
def path(self):
|
|
return self._path
|
|
|
|
@property
|
|
def meta(self):
|
|
spacy_version = util.get_model_version_range(about.__version__)
|
|
if self.vocab.lang:
|
|
self._meta.setdefault("lang", self.vocab.lang)
|
|
else:
|
|
self._meta.setdefault("lang", self.lang)
|
|
self._meta.setdefault("name", "model")
|
|
self._meta.setdefault("version", "0.0.0")
|
|
self._meta.setdefault("spacy_version", spacy_version)
|
|
self._meta.setdefault("description", "")
|
|
self._meta.setdefault("author", "")
|
|
self._meta.setdefault("email", "")
|
|
self._meta.setdefault("url", "")
|
|
self._meta.setdefault("license", "")
|
|
self._meta["vectors"] = {
|
|
"width": self.vocab.vectors_length,
|
|
"vectors": len(self.vocab.vectors),
|
|
"keys": self.vocab.vectors.n_keys,
|
|
"name": self.vocab.vectors.name,
|
|
}
|
|
self._meta["pipeline"] = self.pipe_names
|
|
self._meta["factories"] = self.pipe_factories
|
|
self._meta["labels"] = self.pipe_labels
|
|
return self._meta
|
|
|
|
@meta.setter
|
|
def meta(self, value):
|
|
self._meta = value
|
|
|
|
@property
|
|
def config(self):
|
|
return self._config
|
|
|
|
# Conveniences to access pipeline components
|
|
# Shouldn't be used anymore!
|
|
@property
|
|
def tagger(self):
|
|
return self.get_pipe("tagger")
|
|
|
|
@property
|
|
def parser(self):
|
|
return self.get_pipe("parser")
|
|
|
|
@property
|
|
def entity(self):
|
|
return self.get_pipe("ner")
|
|
|
|
@property
|
|
def linker(self):
|
|
return self.get_pipe("entity_linker")
|
|
|
|
@property
|
|
def senter(self):
|
|
return self.get_pipe("senter")
|
|
|
|
@property
|
|
def matcher(self):
|
|
return self.get_pipe("matcher")
|
|
|
|
@property
|
|
def pipe_names(self):
|
|
"""Get names of available pipeline components.
|
|
|
|
RETURNS (list): List of component name strings, in order.
|
|
"""
|
|
return [pipe_name for pipe_name, _ in self.pipeline]
|
|
|
|
@property
|
|
def pipe_factories(self):
|
|
"""Get the component factories for the available pipeline components.
|
|
|
|
RETURNS (dict): Factory names, keyed by component names.
|
|
"""
|
|
factories = {}
|
|
for pipe_name, pipe in self.pipeline:
|
|
factories[pipe_name] = getattr(pipe, "factory", pipe_name)
|
|
return factories
|
|
|
|
@property
|
|
def pipe_labels(self):
|
|
"""Get the labels set by the pipeline components, if available (if
|
|
the component exposes a labels property).
|
|
|
|
RETURNS (dict): Labels keyed by component name.
|
|
"""
|
|
labels = {}
|
|
for name, pipe in self.pipeline:
|
|
if hasattr(pipe, "labels"):
|
|
labels[name] = list(pipe.labels)
|
|
return labels
|
|
|
|
def get_pipe(self, name):
|
|
"""Get a pipeline component for a given component name.
|
|
|
|
name (str): Name of pipeline component to get.
|
|
RETURNS (callable): The pipeline component.
|
|
|
|
DOCS: https://spacy.io/api/language#get_pipe
|
|
"""
|
|
for pipe_name, component in self.pipeline:
|
|
if pipe_name == name:
|
|
return component
|
|
raise KeyError(Errors.E001.format(name=name, opts=self.pipe_names))
|
|
|
|
def create_pipe(self, name, config=dict()):
|
|
"""Create a pipeline component from a factory.
|
|
|
|
name (str): Factory name to look up in `Language.factories`.
|
|
config (dict): Configuration parameters to initialise component.
|
|
RETURNS (callable): Pipeline component.
|
|
|
|
DOCS: https://spacy.io/api/language#create_pipe
|
|
"""
|
|
if name not in self.factories:
|
|
if name == "sbd":
|
|
raise KeyError(Errors.E108.format(name=name))
|
|
else:
|
|
raise KeyError(Errors.E002.format(name=name))
|
|
factory = self.factories[name]
|
|
|
|
# transform the model's config to an actual Model
|
|
factory_cfg = dict(config)
|
|
|
|
# check whether we have a proper model config, ignore if the type is wrong
|
|
if "model" in factory_cfg and not isinstance(factory_cfg["model"], dict):
|
|
warnings.warn(
|
|
Warnings.W099.format(type=type(factory_cfg["model"]), pipe=name)
|
|
)
|
|
|
|
# refer to the model configuration in the cfg settings for this component
|
|
elif "model" in factory_cfg:
|
|
self.config[name] = {"model": factory_cfg["model"]}
|
|
|
|
# create all objects in the config
|
|
factory_cfg = registry.make_from_config({"config": factory_cfg}, validate=True)[
|
|
"config"
|
|
]
|
|
model = factory_cfg.get("model", None)
|
|
if model is not None:
|
|
del factory_cfg["model"]
|
|
return factory(self, model, **factory_cfg)
|
|
|
|
def add_pipe(
|
|
self, component, name=None, before=None, after=None, first=None, last=None
|
|
):
|
|
"""Add a component to the processing pipeline. Valid components are
|
|
callables that take a `Doc` object, modify it and return it. Only one
|
|
of before/after/first/last can be set. Default behaviour is "last".
|
|
|
|
component (callable): The pipeline component.
|
|
name (str): Name of pipeline component. Overwrites existing
|
|
component.name attribute if available. If no name is set and
|
|
the component exposes no name attribute, component.__name__ is
|
|
used. An error is raised if a name already exists in the pipeline.
|
|
before (str): Component name to insert component directly before.
|
|
after (str): Component name to insert component directly after.
|
|
first (bool): Insert component first / not first in the pipeline.
|
|
last (bool): Insert component last / not last in the pipeline.
|
|
|
|
DOCS: https://spacy.io/api/language#add_pipe
|
|
"""
|
|
if not hasattr(component, "__call__"):
|
|
msg = Errors.E003.format(component=repr(component), name=name)
|
|
if isinstance(component, str) and component in self.factories:
|
|
msg += Errors.E004.format(component=component)
|
|
raise ValueError(msg)
|
|
if name is None:
|
|
name = util.get_component_name(component)
|
|
if name in self.pipe_names:
|
|
raise ValueError(Errors.E007.format(name=name, opts=self.pipe_names))
|
|
if sum([bool(before), bool(after), bool(first), bool(last)]) >= 2:
|
|
raise ValueError(Errors.E006)
|
|
pipe_index = 0
|
|
pipe = (name, component)
|
|
if last or not any([first, before, after]):
|
|
pipe_index = len(self.pipeline)
|
|
self.pipeline.append(pipe)
|
|
elif first:
|
|
self.pipeline.insert(0, pipe)
|
|
elif before and before in self.pipe_names:
|
|
pipe_index = self.pipe_names.index(before)
|
|
self.pipeline.insert(self.pipe_names.index(before), pipe)
|
|
elif after and after in self.pipe_names:
|
|
pipe_index = self.pipe_names.index(after) + 1
|
|
self.pipeline.insert(self.pipe_names.index(after) + 1, pipe)
|
|
else:
|
|
raise ValueError(
|
|
Errors.E001.format(name=before or after, opts=self.pipe_names)
|
|
)
|
|
if ENABLE_PIPELINE_ANALYSIS:
|
|
analyze_pipes(self.pipeline, name, component, pipe_index)
|
|
|
|
def has_pipe(self, name):
|
|
"""Check if a component name is present in the pipeline. Equivalent to
|
|
`name in nlp.pipe_names`.
|
|
|
|
name (str): Name of the component.
|
|
RETURNS (bool): Whether a component of the name exists in the pipeline.
|
|
|
|
DOCS: https://spacy.io/api/language#has_pipe
|
|
"""
|
|
return name in self.pipe_names
|
|
|
|
def replace_pipe(self, name, component):
|
|
"""Replace a component in the pipeline.
|
|
|
|
name (str): Name of the component to replace.
|
|
component (callable): Pipeline component.
|
|
|
|
DOCS: https://spacy.io/api/language#replace_pipe
|
|
"""
|
|
if name not in self.pipe_names:
|
|
raise ValueError(Errors.E001.format(name=name, opts=self.pipe_names))
|
|
if not hasattr(component, "__call__"):
|
|
msg = Errors.E003.format(component=repr(component), name=name)
|
|
if isinstance(component, str) and component in self.factories:
|
|
msg += Errors.E135.format(name=name)
|
|
raise ValueError(msg)
|
|
self.pipeline[self.pipe_names.index(name)] = (name, component)
|
|
if ENABLE_PIPELINE_ANALYSIS:
|
|
analyze_all_pipes(self.pipeline)
|
|
|
|
def rename_pipe(self, old_name, new_name):
|
|
"""Rename a pipeline component.
|
|
|
|
old_name (str): Name of the component to rename.
|
|
new_name (str): New name of the component.
|
|
|
|
DOCS: https://spacy.io/api/language#rename_pipe
|
|
"""
|
|
if old_name not in self.pipe_names:
|
|
raise ValueError(Errors.E001.format(name=old_name, opts=self.pipe_names))
|
|
if new_name in self.pipe_names:
|
|
raise ValueError(Errors.E007.format(name=new_name, opts=self.pipe_names))
|
|
i = self.pipe_names.index(old_name)
|
|
self.pipeline[i] = (new_name, self.pipeline[i][1])
|
|
|
|
def remove_pipe(self, name):
|
|
"""Remove a component from the pipeline.
|
|
|
|
name (str): Name of the component to remove.
|
|
RETURNS (tuple): A `(name, component)` tuple of the removed component.
|
|
|
|
DOCS: https://spacy.io/api/language#remove_pipe
|
|
"""
|
|
if name not in self.pipe_names:
|
|
raise ValueError(Errors.E001.format(name=name, opts=self.pipe_names))
|
|
removed = self.pipeline.pop(self.pipe_names.index(name))
|
|
if ENABLE_PIPELINE_ANALYSIS:
|
|
analyze_all_pipes(self.pipeline)
|
|
return removed
|
|
|
|
def __call__(self, text, disable=[], component_cfg=None):
|
|
"""Apply the pipeline to some text. The text can span multiple sentences,
|
|
and can contain arbitrary whitespace. Alignment into the original string
|
|
is preserved.
|
|
|
|
text (str): The text to be processed.
|
|
disable (list): Names of the pipeline components to disable.
|
|
component_cfg (dict): An optional dictionary with extra keyword arguments
|
|
for specific components.
|
|
RETURNS (Doc): A container for accessing the annotations.
|
|
|
|
DOCS: https://spacy.io/api/language#call
|
|
"""
|
|
if len(text) > self.max_length:
|
|
raise ValueError(
|
|
Errors.E088.format(length=len(text), max_length=self.max_length)
|
|
)
|
|
doc = self.make_doc(text)
|
|
if component_cfg is None:
|
|
component_cfg = {}
|
|
for name, proc in self.pipeline:
|
|
if name in disable:
|
|
continue
|
|
if not hasattr(proc, "__call__"):
|
|
raise ValueError(Errors.E003.format(component=type(proc), name=name))
|
|
try:
|
|
doc = proc(doc, **component_cfg.get(name, {}))
|
|
except KeyError:
|
|
raise ValueError(Errors.E109.format(name=name))
|
|
if doc is None:
|
|
raise ValueError(Errors.E005.format(name=name))
|
|
return doc
|
|
|
|
def disable_pipes(self, *names):
|
|
"""Disable one or more pipeline components. If used as a context
|
|
manager, the pipeline will be restored to the initial state at the end
|
|
of the block. Otherwise, a DisabledPipes object is returned, that has
|
|
a `.restore()` method you can use to undo your changes.
|
|
|
|
This method has been deprecated since 3.0
|
|
"""
|
|
warnings.warn(Warnings.W096, DeprecationWarning)
|
|
if len(names) == 1 and isinstance(names[0], (list, tuple)):
|
|
names = names[0] # support list of names instead of spread
|
|
return DisabledPipes(self, names)
|
|
|
|
def select_pipes(self, disable=None, enable=None):
|
|
"""Disable one or more pipeline components. If used as a context
|
|
manager, the pipeline will be restored to the initial state at the end
|
|
of the block. Otherwise, a DisabledPipes object is returned, that has
|
|
a `.restore()` method you can use to undo your changes.
|
|
|
|
disable (str or iterable): The name(s) of the pipes to disable
|
|
enable (str or iterable): The name(s) of the pipes to enable - all others will be disabled
|
|
|
|
DOCS: https://spacy.io/api/language#select_pipes
|
|
"""
|
|
if enable is None and disable is None:
|
|
raise ValueError(Errors.E991)
|
|
if disable is not None and isinstance(disable, str):
|
|
disable = [disable]
|
|
if enable is not None:
|
|
if isinstance(enable, str):
|
|
enable = [enable]
|
|
to_disable = [pipe for pipe in self.pipe_names if pipe not in enable]
|
|
# raise an error if the enable and disable keywords are not consistent
|
|
if disable is not None and disable != to_disable:
|
|
raise ValueError(
|
|
Errors.E992.format(
|
|
enable=enable, disable=disable, names=self.pipe_names
|
|
)
|
|
)
|
|
disable = to_disable
|
|
return DisabledPipes(self, disable)
|
|
|
|
def make_doc(self, text):
|
|
return self.tokenizer(text)
|
|
|
|
def _convert_examples(self, examples):
|
|
converted_examples = []
|
|
if isinstance(examples, tuple):
|
|
examples = [examples]
|
|
for eg in examples:
|
|
if isinstance(eg, Example):
|
|
converted_examples.append(eg.copy())
|
|
elif isinstance(eg, tuple):
|
|
doc, annot = eg
|
|
if isinstance(doc, str):
|
|
doc = self.make_doc(doc)
|
|
converted_examples.append(Example.from_dict(doc, annot))
|
|
else:
|
|
raise ValueError(Errors.E979.format(type=type(eg)))
|
|
return converted_examples
|
|
|
|
def update(
|
|
self,
|
|
examples,
|
|
dummy=None,
|
|
*,
|
|
drop=0.0,
|
|
sgd=None,
|
|
losses=None,
|
|
component_cfg=None,
|
|
):
|
|
"""Update the models in the pipeline.
|
|
|
|
examples (iterable): A batch of `Example` or `Doc` objects.
|
|
dummy: Should not be set - serves to catch backwards-incompatible scripts.
|
|
drop (float): The dropout rate.
|
|
sgd (callable): An optimizer.
|
|
losses (dict): Dictionary to update with the loss, keyed by component.
|
|
component_cfg (dict): Config parameters for specific pipeline
|
|
components, keyed by component name.
|
|
|
|
DOCS: https://spacy.io/api/language#update
|
|
"""
|
|
if dummy is not None:
|
|
raise ValueError(Errors.E989)
|
|
|
|
if len(examples) == 0:
|
|
return
|
|
examples = self._convert_examples(examples)
|
|
|
|
if sgd is None:
|
|
if self._optimizer is None:
|
|
self._optimizer = create_default_optimizer()
|
|
sgd = self._optimizer
|
|
|
|
if component_cfg is None:
|
|
component_cfg = {}
|
|
component_deps = count_pipeline_interdependencies(self.pipeline)
|
|
# Determine whether component should set annotations. In theory I guess
|
|
# we should do this by inspecting the meta? Or we could just always
|
|
# say "yes"
|
|
for i, (name, proc) in enumerate(self.pipeline):
|
|
component_cfg.setdefault(name, {})
|
|
component_cfg[name].setdefault("drop", drop)
|
|
component_cfg[name]["set_annotations"] = bool(component_deps[i])
|
|
for name, proc in self.pipeline:
|
|
if not hasattr(proc, "update"):
|
|
continue
|
|
proc.update(examples, sgd=None, losses=losses, **component_cfg[name])
|
|
if sgd is not False:
|
|
for name, proc in self.pipeline:
|
|
if hasattr(proc, "model"):
|
|
proc.model.finish_update(sgd)
|
|
|
|
def rehearse(self, examples, sgd=None, losses=None, config=None):
|
|
"""Make a "rehearsal" update to the models in the pipeline, to prevent
|
|
forgetting. Rehearsal updates run an initial copy of the model over some
|
|
data, and update the model so its current predictions are more like the
|
|
initial ones. This is useful for keeping a pretrained model on-track,
|
|
even if you're updating it with a smaller set of examples.
|
|
|
|
examples (iterable): A batch of `Doc` objects.
|
|
drop (float): The dropout rate.
|
|
sgd (callable): An optimizer.
|
|
RETURNS (dict): Results from the update.
|
|
|
|
EXAMPLE:
|
|
>>> raw_text_batches = minibatch(raw_texts)
|
|
>>> for labelled_batch in minibatch(zip(train_docs, train_golds)):
|
|
>>> nlp.update(labelled_batch)
|
|
>>> raw_batch = [nlp.make_doc(text) for text in next(raw_text_batches)]
|
|
>>> nlp.rehearse(raw_batch)
|
|
"""
|
|
# TODO: document
|
|
if len(examples) == 0:
|
|
return
|
|
examples = self._convert_examples(examples)
|
|
if sgd is None:
|
|
if self._optimizer is None:
|
|
self._optimizer = create_default_optimizer()
|
|
sgd = self._optimizer
|
|
pipes = list(self.pipeline)
|
|
random.shuffle(pipes)
|
|
if config is None:
|
|
config = {}
|
|
grads = {}
|
|
|
|
def get_grads(W, dW, key=None):
|
|
grads[key] = (W, dW)
|
|
|
|
get_grads.learn_rate = sgd.learn_rate
|
|
get_grads.b1 = sgd.b1
|
|
get_grads.b2 = sgd.b2
|
|
for name, proc in pipes:
|
|
if not hasattr(proc, "rehearse"):
|
|
continue
|
|
grads = {}
|
|
proc.rehearse(
|
|
examples, sgd=get_grads, losses=losses, **config.get(name, {})
|
|
)
|
|
for key, (W, dW) in grads.items():
|
|
sgd(W, dW, key=key)
|
|
return losses
|
|
|
|
def begin_training(self, get_examples=None, sgd=None, component_cfg=None, **cfg):
|
|
"""Allocate models, pre-process training data and acquire a trainer and
|
|
optimizer. Used as a contextmanager.
|
|
|
|
get_examples (function): Function returning example training data (TODO: document format change since 3.0)
|
|
component_cfg (dict): Config parameters for specific components.
|
|
**cfg: Config parameters.
|
|
RETURNS: An optimizer.
|
|
|
|
DOCS: https://spacy.io/api/language#begin_training
|
|
"""
|
|
# TODO: throw warning when get_gold_tuples is provided instead of get_examples
|
|
if get_examples is None:
|
|
get_examples = lambda: []
|
|
# Populate vocab
|
|
else:
|
|
for example in get_examples():
|
|
for word in [t.text for t in example.reference]:
|
|
_ = self.vocab[word] # noqa: F841
|
|
|
|
if cfg.get("device", -1) >= 0:
|
|
util.use_gpu(cfg["device"])
|
|
if self.vocab.vectors.data.shape[1] >= 1:
|
|
ops = get_current_ops()
|
|
self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data)
|
|
link_vectors_to_models(self.vocab)
|
|
if sgd is None:
|
|
sgd = create_default_optimizer()
|
|
self._optimizer = sgd
|
|
if component_cfg is None:
|
|
component_cfg = {}
|
|
for name, proc in self.pipeline:
|
|
if hasattr(proc, "begin_training"):
|
|
kwargs = component_cfg.get(name, {})
|
|
kwargs.update(cfg)
|
|
proc.begin_training(
|
|
get_examples, pipeline=self.pipeline, sgd=self._optimizer, **kwargs
|
|
)
|
|
self._link_components()
|
|
return self._optimizer
|
|
|
|
def resume_training(self, sgd=None, **cfg):
|
|
"""Continue training a pretrained model.
|
|
|
|
Create and return an optimizer, and initialize "rehearsal" for any pipeline
|
|
component that has a .rehearse() method. Rehearsal is used to prevent
|
|
models from "forgetting" their initialised "knowledge". To perform
|
|
rehearsal, collect samples of text you want the models to retain performance
|
|
on, and call nlp.rehearse() with a batch of Doc objects.
|
|
"""
|
|
if cfg.get("device", -1) >= 0:
|
|
util.use_gpu(cfg["device"])
|
|
ops = get_current_ops()
|
|
if self.vocab.vectors.data.shape[1] >= 1:
|
|
self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data)
|
|
link_vectors_to_models(self.vocab)
|
|
if sgd is None:
|
|
sgd = create_default_optimizer()
|
|
self._optimizer = sgd
|
|
for name, proc in self.pipeline:
|
|
if hasattr(proc, "_rehearsal_model"):
|
|
proc._rehearsal_model = deepcopy(proc.model)
|
|
return self._optimizer
|
|
|
|
def evaluate(
|
|
self, examples, verbose=False, batch_size=256, scorer=None, component_cfg=None
|
|
):
|
|
"""Evaluate a model's pipeline components.
|
|
|
|
examples (iterable): `Example` objects.
|
|
verbose (bool): Print debugging information.
|
|
batch_size (int): Batch size to use.
|
|
scorer (Scorer): Optional `Scorer` to use. If not passed in, a new one
|
|
will be created.
|
|
component_cfg (dict): An optional dictionary with extra keyword
|
|
arguments for specific components.
|
|
RETURNS (Scorer): The scorer containing the evaluation results.
|
|
|
|
DOCS: https://spacy.io/api/language#evaluate
|
|
"""
|
|
examples = self._convert_examples(examples)
|
|
if scorer is None:
|
|
scorer = Scorer(pipeline=self.pipeline)
|
|
if component_cfg is None:
|
|
component_cfg = {}
|
|
docs = list(eg.predicted for eg in examples)
|
|
for name, pipe in self.pipeline:
|
|
kwargs = component_cfg.get(name, {})
|
|
kwargs.setdefault("batch_size", batch_size)
|
|
if not hasattr(pipe, "pipe"):
|
|
docs = _pipe(docs, pipe, kwargs)
|
|
else:
|
|
docs = pipe.pipe(docs, **kwargs)
|
|
for i, (doc, eg) in enumerate(zip(docs, examples)):
|
|
if verbose:
|
|
print(doc)
|
|
eg.predicted = doc
|
|
kwargs = component_cfg.get("scorer", {})
|
|
kwargs.setdefault("verbose", verbose)
|
|
scorer.score(eg, **kwargs)
|
|
return scorer
|
|
|
|
@contextmanager
|
|
def use_params(self, params, **cfg):
|
|
"""Replace weights of models in the pipeline with those provided in the
|
|
params dictionary. Can be used as a contextmanager, in which case,
|
|
models go back to their original weights after the block.
|
|
|
|
params (dict): A dictionary of parameters keyed by model ID.
|
|
**cfg: Config parameters.
|
|
|
|
EXAMPLE:
|
|
>>> with nlp.use_params(optimizer.averages):
|
|
>>> nlp.to_disk('/tmp/checkpoint')
|
|
"""
|
|
contexts = [
|
|
pipe.use_params(params)
|
|
for name, pipe in self.pipeline
|
|
if hasattr(pipe, "use_params") and hasattr(pipe, "model")
|
|
]
|
|
# TODO: Having trouble with contextlib
|
|
# Workaround: these aren't actually context managers atm.
|
|
for context in contexts:
|
|
try:
|
|
next(context)
|
|
except StopIteration:
|
|
pass
|
|
yield
|
|
for context in contexts:
|
|
try:
|
|
next(context)
|
|
except StopIteration:
|
|
pass
|
|
|
|
def pipe(
|
|
self,
|
|
texts,
|
|
as_tuples=False,
|
|
n_threads=-1,
|
|
batch_size=1000,
|
|
disable=[],
|
|
cleanup=False,
|
|
component_cfg=None,
|
|
n_process=1,
|
|
):
|
|
"""Process texts as a stream, and yield `Doc` objects in order.
|
|
|
|
texts (iterator): A sequence of texts to process.
|
|
as_tuples (bool): If set to True, inputs should be a sequence of
|
|
(text, context) tuples. Output will then be a sequence of
|
|
(doc, context) tuples. Defaults to False.
|
|
batch_size (int): The number of texts to buffer.
|
|
disable (list): Names of the pipeline components to disable.
|
|
cleanup (bool): If True, unneeded strings are freed to control memory
|
|
use. Experimental.
|
|
component_cfg (dict): An optional dictionary with extra keyword
|
|
arguments for specific components.
|
|
n_process (int): Number of processors to process texts, only supported
|
|
in Python3. If -1, set `multiprocessing.cpu_count()`.
|
|
YIELDS (Doc): Documents in the order of the original text.
|
|
|
|
DOCS: https://spacy.io/api/language#pipe
|
|
"""
|
|
if n_threads != -1:
|
|
warnings.warn(Warnings.W016, DeprecationWarning)
|
|
if n_process == -1:
|
|
n_process = mp.cpu_count()
|
|
if as_tuples:
|
|
text_context1, text_context2 = itertools.tee(texts)
|
|
texts = (tc[0] for tc in text_context1)
|
|
contexts = (tc[1] for tc in text_context2)
|
|
docs = self.pipe(
|
|
texts,
|
|
batch_size=batch_size,
|
|
disable=disable,
|
|
n_process=n_process,
|
|
component_cfg=component_cfg,
|
|
)
|
|
for doc, context in zip(docs, contexts):
|
|
yield (doc, context)
|
|
return
|
|
if component_cfg is None:
|
|
component_cfg = {}
|
|
|
|
pipes = (
|
|
[]
|
|
) # contains functools.partial objects to easily create multiprocess worker.
|
|
for name, proc in self.pipeline:
|
|
if name in disable:
|
|
continue
|
|
kwargs = component_cfg.get(name, {})
|
|
# Allow component_cfg to overwrite the top-level kwargs.
|
|
kwargs.setdefault("batch_size", batch_size)
|
|
if hasattr(proc, "pipe"):
|
|
f = functools.partial(proc.pipe, **kwargs)
|
|
else:
|
|
# Apply the function, but yield the doc
|
|
f = functools.partial(_pipe, proc=proc, kwargs=kwargs)
|
|
pipes.append(f)
|
|
|
|
if n_process != 1:
|
|
docs = self._multiprocessing_pipe(texts, pipes, n_process, batch_size)
|
|
else:
|
|
# if n_process == 1, no processes are forked.
|
|
docs = (self.make_doc(text) for text in texts)
|
|
for pipe in pipes:
|
|
docs = pipe(docs)
|
|
|
|
# Track weakrefs of "recent" documents, so that we can see when they
|
|
# expire from memory. When they do, we know we don't need old strings.
|
|
# This way, we avoid maintaining an unbounded growth in string entries
|
|
# in the string store.
|
|
recent_refs = weakref.WeakSet()
|
|
old_refs = weakref.WeakSet()
|
|
# Keep track of the original string data, so that if we flush old strings,
|
|
# we can recover the original ones. However, we only want to do this if we're
|
|
# really adding strings, to save up-front costs.
|
|
original_strings_data = None
|
|
nr_seen = 0
|
|
for doc in docs:
|
|
yield doc
|
|
if cleanup:
|
|
recent_refs.add(doc)
|
|
if nr_seen < 10000:
|
|
old_refs.add(doc)
|
|
nr_seen += 1
|
|
elif len(old_refs) == 0:
|
|
old_refs, recent_refs = recent_refs, old_refs
|
|
if original_strings_data is None:
|
|
original_strings_data = list(self.vocab.strings)
|
|
else:
|
|
keys, strings = self.vocab.strings._cleanup_stale_strings(
|
|
original_strings_data
|
|
)
|
|
self.vocab._reset_cache(keys, strings)
|
|
self.tokenizer._reset_cache(keys)
|
|
nr_seen = 0
|
|
|
|
def _multiprocessing_pipe(self, texts, pipes, n_process, batch_size):
|
|
# raw_texts is used later to stop iteration.
|
|
texts, raw_texts = itertools.tee(texts)
|
|
# for sending texts to worker
|
|
texts_q = [mp.Queue() for _ in range(n_process)]
|
|
# for receiving byte-encoded docs from worker
|
|
bytedocs_recv_ch, bytedocs_send_ch = zip(
|
|
*[mp.Pipe(False) for _ in range(n_process)]
|
|
)
|
|
|
|
batch_texts = util.minibatch(texts, batch_size)
|
|
# Sender sends texts to the workers.
|
|
# This is necessary to properly handle infinite length of texts.
|
|
# (In this case, all data cannot be sent to the workers at once)
|
|
sender = _Sender(batch_texts, texts_q, chunk_size=n_process)
|
|
# send twice to make process busy
|
|
sender.send()
|
|
sender.send()
|
|
|
|
procs = [
|
|
mp.Process(
|
|
target=_apply_pipes,
|
|
args=(self.make_doc, pipes, rch, sch, Underscore.get_state()),
|
|
)
|
|
for rch, sch in zip(texts_q, bytedocs_send_ch)
|
|
]
|
|
for proc in procs:
|
|
proc.start()
|
|
|
|
# Cycle channels not to break the order of docs.
|
|
# The received object is a batch of byte-encoded docs, so flatten them with chain.from_iterable.
|
|
byte_docs = chain.from_iterable(recv.recv() for recv in cycle(bytedocs_recv_ch))
|
|
docs = (Doc(self.vocab).from_bytes(byte_doc) for byte_doc in byte_docs)
|
|
try:
|
|
for i, (_, doc) in enumerate(zip(raw_texts, docs), 1):
|
|
yield doc
|
|
if i % batch_size == 0:
|
|
# tell `sender` that one batch was consumed.
|
|
sender.step()
|
|
finally:
|
|
for proc in procs:
|
|
proc.terminate()
|
|
|
|
def _link_components(self):
|
|
"""Register 'listeners' within pipeline components, to allow them to
|
|
effectively share weights.
|
|
"""
|
|
for i, (name1, proc1) in enumerate(self.pipeline):
|
|
if hasattr(proc1, "find_listeners"):
|
|
for name2, proc2 in self.pipeline[i:]:
|
|
if hasattr(proc2, "model"):
|
|
proc1.find_listeners(proc2.model)
|
|
|
|
def to_disk(self, path, exclude=tuple(), disable=None):
|
|
"""Save the current state to a directory. If a model is loaded, this
|
|
will include the model.
|
|
|
|
path (str / Path): Path to a directory, which will be created if
|
|
it doesn't exist.
|
|
exclude (list): Names of components or serialization fields to exclude.
|
|
|
|
DOCS: https://spacy.io/api/language#to_disk
|
|
"""
|
|
if disable is not None:
|
|
warnings.warn(Warnings.W014, DeprecationWarning)
|
|
exclude = disable
|
|
path = util.ensure_path(path)
|
|
serializers = {}
|
|
serializers["tokenizer"] = lambda p: self.tokenizer.to_disk(
|
|
p, exclude=["vocab"]
|
|
)
|
|
serializers["meta.json"] = lambda p: srsly.write_json(p, self.meta)
|
|
serializers["config.cfg"] = lambda p: self.config.to_disk(p)
|
|
for name, proc in self.pipeline:
|
|
if not hasattr(proc, "name"):
|
|
continue
|
|
if name in exclude:
|
|
continue
|
|
if not hasattr(proc, "to_disk"):
|
|
continue
|
|
serializers[name] = lambda p, proc=proc: proc.to_disk(p, exclude=["vocab"])
|
|
serializers["vocab"] = lambda p: self.vocab.to_disk(p)
|
|
util.to_disk(path, serializers, exclude)
|
|
|
|
def from_disk(self, path, exclude=tuple(), disable=None):
|
|
"""Loads state from a directory. Modifies the object in place and
|
|
returns it. If the saved `Language` object contains a model, the
|
|
model will be loaded.
|
|
|
|
path (str / Path): A path to a directory.
|
|
exclude (list): Names of components or serialization fields to exclude.
|
|
RETURNS (Language): The modified `Language` object.
|
|
|
|
DOCS: https://spacy.io/api/language#from_disk
|
|
"""
|
|
|
|
def deserialize_meta(path):
|
|
if path.exists():
|
|
data = srsly.read_json(path)
|
|
self.meta.update(data)
|
|
# self.meta always overrides meta["vectors"] with the metadata
|
|
# from self.vocab.vectors, so set the name directly
|
|
self.vocab.vectors.name = data.get("vectors", {}).get("name")
|
|
|
|
def deserialize_vocab(path):
|
|
if path.exists():
|
|
self.vocab.from_disk(path)
|
|
_fix_pretrained_vectors_name(self)
|
|
|
|
if disable is not None:
|
|
warnings.warn(Warnings.W014, DeprecationWarning)
|
|
exclude = disable
|
|
path = util.ensure_path(path)
|
|
|
|
deserializers = {}
|
|
if Path(path / "config.cfg").exists():
|
|
deserializers["config.cfg"] = lambda p: self.config.from_disk(p)
|
|
deserializers["meta.json"] = deserialize_meta
|
|
deserializers["vocab"] = deserialize_vocab
|
|
deserializers["tokenizer"] = lambda p: self.tokenizer.from_disk(
|
|
p, exclude=["vocab"]
|
|
)
|
|
for name, proc in self.pipeline:
|
|
if name in exclude:
|
|
continue
|
|
if not hasattr(proc, "from_disk"):
|
|
continue
|
|
deserializers[name] = lambda p, proc=proc: proc.from_disk(
|
|
p, exclude=["vocab"]
|
|
)
|
|
if not (path / "vocab").exists() and "vocab" not in exclude:
|
|
# Convert to list here in case exclude is (default) tuple
|
|
exclude = list(exclude) + ["vocab"]
|
|
util.from_disk(path, deserializers, exclude)
|
|
self._path = path
|
|
self._link_components()
|
|
return self
|
|
|
|
def to_bytes(self, exclude=tuple(), disable=None, **kwargs):
|
|
"""Serialize the current state to a binary string.
|
|
|
|
exclude (list): Names of components or serialization fields to exclude.
|
|
RETURNS (bytes): The serialized form of the `Language` object.
|
|
|
|
DOCS: https://spacy.io/api/language#to_bytes
|
|
"""
|
|
if disable is not None:
|
|
warnings.warn(Warnings.W014, DeprecationWarning)
|
|
exclude = disable
|
|
serializers = {}
|
|
serializers["vocab"] = lambda: self.vocab.to_bytes()
|
|
serializers["tokenizer"] = lambda: self.tokenizer.to_bytes(exclude=["vocab"])
|
|
serializers["meta.json"] = lambda: srsly.json_dumps(self.meta)
|
|
serializers["config.cfg"] = lambda: self.config.to_bytes()
|
|
for name, proc in self.pipeline:
|
|
if name in exclude:
|
|
continue
|
|
if not hasattr(proc, "to_bytes"):
|
|
continue
|
|
serializers[name] = lambda proc=proc: proc.to_bytes(exclude=["vocab"])
|
|
exclude = util.get_serialization_exclude(serializers, exclude, kwargs)
|
|
return util.to_bytes(serializers, exclude)
|
|
|
|
def from_bytes(self, bytes_data, exclude=tuple(), disable=None, **kwargs):
|
|
"""Load state from a binary string.
|
|
|
|
bytes_data (bytes): The data to load from.
|
|
exclude (list): Names of components or serialization fields to exclude.
|
|
RETURNS (Language): The `Language` object.
|
|
|
|
DOCS: https://spacy.io/api/language#from_bytes
|
|
"""
|
|
|
|
def deserialize_meta(b):
|
|
data = srsly.json_loads(b)
|
|
self.meta.update(data)
|
|
# self.meta always overrides meta["vectors"] with the metadata
|
|
# from self.vocab.vectors, so set the name directly
|
|
self.vocab.vectors.name = data.get("vectors", {}).get("name")
|
|
|
|
def deserialize_vocab(b):
|
|
self.vocab.from_bytes(b)
|
|
_fix_pretrained_vectors_name(self)
|
|
|
|
if disable is not None:
|
|
warnings.warn(Warnings.W014, DeprecationWarning)
|
|
exclude = disable
|
|
deserializers = {}
|
|
deserializers["config.cfg"] = lambda b: self.config.from_bytes(b)
|
|
deserializers["meta.json"] = deserialize_meta
|
|
deserializers["vocab"] = deserialize_vocab
|
|
deserializers["tokenizer"] = lambda b: self.tokenizer.from_bytes(
|
|
b, exclude=["vocab"]
|
|
)
|
|
for name, proc in self.pipeline:
|
|
if name in exclude:
|
|
continue
|
|
if not hasattr(proc, "from_bytes"):
|
|
continue
|
|
deserializers[name] = lambda b, proc=proc: proc.from_bytes(
|
|
b, exclude=["vocab"]
|
|
)
|
|
exclude = util.get_serialization_exclude(deserializers, exclude, kwargs)
|
|
util.from_bytes(bytes_data, deserializers, exclude)
|
|
self._link_components()
|
|
return self
|
|
|
|
|
|
class component(object):
|
|
"""Decorator for pipeline components. Can decorate both function components
|
|
and class components and will automatically register components in the
|
|
Language.factories. If the component is a class and needs access to the
|
|
nlp object or config parameters, it can expose a from_nlp classmethod
|
|
that takes the nlp & model objects and **cfg arguments, and returns the
|
|
initialized component.
|
|
"""
|
|
|
|
# NB: This decorator needs to live here, because it needs to write to
|
|
# Language.factories. All other solutions would cause circular import.
|
|
|
|
def __init__(
|
|
self,
|
|
name=None,
|
|
assigns=tuple(),
|
|
requires=tuple(),
|
|
retokenizes=False,
|
|
default_model=lambda: None,
|
|
default_config=None,
|
|
):
|
|
"""Decorate a pipeline component.
|
|
|
|
name (str): Default component and factory name.
|
|
assigns (list): Attributes assigned by component, e.g. `["token.pos"]`.
|
|
requires (list): Attributes required by component, e.g. `["token.dep"]`.
|
|
retokenizes (bool): Whether the component changes the tokenization.
|
|
"""
|
|
self.name = name
|
|
self.assigns = validate_attrs(assigns)
|
|
self.requires = validate_attrs(requires)
|
|
self.retokenizes = retokenizes
|
|
self.default_model = default_model
|
|
self.default_config = default_config
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
obj = args[0]
|
|
args = args[1:]
|
|
factory_name = self.name or util.get_component_name(obj)
|
|
obj.name = factory_name
|
|
obj.factory = factory_name
|
|
obj.assigns = self.assigns
|
|
obj.requires = self.requires
|
|
obj.retokenizes = self.retokenizes
|
|
|
|
def factory(nlp, model, **cfg):
|
|
if model is None:
|
|
model = self.default_model()
|
|
if self.default_config:
|
|
for key, value in self.default_config.items():
|
|
if key not in cfg:
|
|
cfg[key] = value
|
|
if hasattr(obj, "from_nlp"):
|
|
return obj.from_nlp(nlp, model, **cfg)
|
|
elif isinstance(obj, type):
|
|
return obj()
|
|
return obj
|
|
|
|
Language.factories[obj.factory] = factory
|
|
return obj
|
|
|
|
|
|
def _fix_pretrained_vectors_name(nlp):
|
|
# TODO: Replace this once we handle vectors consistently as static
|
|
# data
|
|
if "vectors" in nlp.meta and "name" in nlp.meta["vectors"]:
|
|
nlp.vocab.vectors.name = nlp.meta["vectors"]["name"]
|
|
elif not nlp.vocab.vectors.size:
|
|
nlp.vocab.vectors.name = None
|
|
elif "name" in nlp.meta and "lang" in nlp.meta:
|
|
vectors_name = f"{nlp.meta['lang']}_{nlp.meta['name']}.vectors"
|
|
nlp.vocab.vectors.name = vectors_name
|
|
else:
|
|
raise ValueError(Errors.E092)
|
|
if nlp.vocab.vectors.size != 0:
|
|
link_vectors_to_models(nlp.vocab)
|
|
for name, proc in nlp.pipeline:
|
|
if not hasattr(proc, "cfg"):
|
|
continue
|
|
proc.cfg.setdefault("deprecation_fixes", {})
|
|
proc.cfg["deprecation_fixes"]["vectors_name"] = nlp.vocab.vectors.name
|
|
|
|
|
|
class DisabledPipes(list):
|
|
"""Manager for temporary pipeline disabling."""
|
|
|
|
def __init__(self, nlp, names):
|
|
self.nlp = nlp
|
|
self.names = names
|
|
# Important! Not deep copy -- we just want the container (but we also
|
|
# want to support people providing arbitrarily typed nlp.pipeline
|
|
# objects.)
|
|
self.original_pipeline = copy(nlp.pipeline)
|
|
list.__init__(self)
|
|
self.extend(nlp.remove_pipe(name) for name in names)
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, *args):
|
|
self.restore()
|
|
|
|
def restore(self):
|
|
"""Restore the pipeline to its state when DisabledPipes was created."""
|
|
current, self.nlp.pipeline = self.nlp.pipeline, self.original_pipeline
|
|
unexpected = [name for name, pipe in current if not self.nlp.has_pipe(name)]
|
|
if unexpected:
|
|
# Don't change the pipeline if we're raising an error.
|
|
self.nlp.pipeline = current
|
|
raise ValueError(Errors.E008.format(names=unexpected))
|
|
self[:] = []
|
|
|
|
|
|
def _pipe(examples, proc, kwargs):
|
|
# We added some args for pipe that __call__ doesn't expect.
|
|
kwargs = dict(kwargs)
|
|
for arg in ["n_threads", "batch_size"]:
|
|
if arg in kwargs:
|
|
kwargs.pop(arg)
|
|
for eg in examples:
|
|
eg = proc(eg, **kwargs)
|
|
yield eg
|
|
|
|
|
|
def _apply_pipes(make_doc, pipes, receiver, sender, underscore_state):
|
|
"""Worker for Language.pipe
|
|
|
|
receiver (multiprocessing.Connection): Pipe to receive text. Usually
|
|
created by `multiprocessing.Pipe()`
|
|
sender (multiprocessing.Connection): Pipe to send doc. Usually created by
|
|
`multiprocessing.Pipe()`
|
|
underscore_state (tuple): The data in the Underscore class of the parent
|
|
"""
|
|
Underscore.load_state(underscore_state)
|
|
while True:
|
|
texts = receiver.get()
|
|
docs = (make_doc(text) for text in texts)
|
|
for pipe in pipes:
|
|
docs = pipe(docs)
|
|
# Connection does not accept unpickable objects, so send list.
|
|
sender.send([doc.to_bytes() for doc in docs])
|
|
|
|
|
|
class _Sender:
|
|
"""Util for sending data to multiprocessing workers in Language.pipe"""
|
|
|
|
def __init__(self, data, queues, chunk_size):
|
|
self.data = iter(data)
|
|
self.queues = iter(cycle(queues))
|
|
self.chunk_size = chunk_size
|
|
self.count = 0
|
|
|
|
def send(self):
|
|
"""Send chunk_size items from self.data to channels."""
|
|
for item, q in itertools.islice(
|
|
zip(self.data, cycle(self.queues)), self.chunk_size
|
|
):
|
|
# cycle channels so that distribute the texts evenly
|
|
q.put(item)
|
|
|
|
def step(self):
|
|
"""Tell sender that comsumed one item.
|
|
|
|
Data is sent to the workers after every chunk_size calls."""
|
|
self.count += 1
|
|
if self.count >= self.chunk_size:
|
|
self.count = 0
|
|
self.send()
|