mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
19650ebb52
* enable fuzzy matching * add fuzzy param to EntityMatcher * include rapidfuzz_capi not yet used * fix type * add FUZZY predicate * add fuzzy attribute list * fix type properly * tidying * remove unnecessary dependency * handle fuzzy sets * simplify fuzzy sets * case fix * switch to FUZZYn predicates use Levenshtein distance. remove fuzzy param. remove rapidfuzz_capi. * revert changes added for fuzzy param * switch to polyleven (Python package) * enable fuzzy matching * add fuzzy param to EntityMatcher * include rapidfuzz_capi not yet used * fix type * add FUZZY predicate * add fuzzy attribute list * fix type properly * tidying * remove unnecessary dependency * handle fuzzy sets * simplify fuzzy sets * case fix * switch to FUZZYn predicates use Levenshtein distance. remove fuzzy param. remove rapidfuzz_capi. * revert changes added for fuzzy param * switch to polyleven (Python package) * fuzzy match only on oov tokens * remove polyleven * exclude whitespace tokens * don't allow more edits than characters * fix min distance * reinstate FUZZY operator with length-based distance function * handle sets inside regex operator * remove is_oov check * attempt build fix no mypy failure locally * re-attempt build fix * don't overwrite fuzzy param value * move fuzzy_match to its own Python module to allow patching * move fuzzy_match back inside Matcher simplify logic and add tests * Format tests * Parametrize fuzzyn tests * Parametrize and merge fuzzy+set tests * Format * Move fuzzy_match to a standalone method * Change regex kwarg type to bool * Add types for fuzzy_match - Refactor variable names - Add test for symmetrical behavior * Parametrize fuzzyn+set tests * Minor refactoring for fuzz/fuzzy * Make fuzzy_match a Matcher kwarg * Update type for _default_fuzzy_match * don't overwrite function param * Rename to fuzzy_compare * Update fuzzy_compare default argument declarations * allow fuzzy_compare override from EntityRuler * define new Matcher keyword arg * fix type definition * Implement fuzzy_compare config option for EntityRuler and SpanRuler * Rename _default_fuzzy_compare to fuzzy_compare, remove from reexported objects * Use simpler fuzzy_compare algorithm * Update types * Increase minimum to 2 in fuzzy_compare to allow one transposition * Fix predicate keys and matching for SetPredicate with FUZZY and REGEX * Add FUZZY6..9 * Add initial docs * Increase default fuzzy to rounded 30% of pattern length * Update docs for fuzzy_compare in components * Update EntityRuler and SpanRuler API docs * Rename EntityRuler and SpanRuler setting to matcher_fuzzy_compare To having naming similar to `phrase_matcher_attr`, rename `fuzzy_compare` setting for `EntityRuler` and `SpanRuler` to `matcher_fuzzy_compare. Organize next to `phrase_matcher_attr` in docs. * Fix schema aliases Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix typo Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Add FUZZY6-9 operators and update tests * Parameterize test over greedy Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix type for fuzzy_compare to remove Optional * Rename to spacy.levenshtein_compare.v1, move to spacy.matcher.levenshtein * Update docs following levenshtein_compare renaming Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
685 lines
25 KiB
Python
685 lines
25 KiB
Python
import pytest
|
|
|
|
from spacy import registry
|
|
from spacy.tokens import Doc, Span
|
|
from spacy.language import Language
|
|
from spacy.lang.en import English
|
|
from spacy.pipeline import EntityRuler, EntityRecognizer, merge_entities
|
|
from spacy.pipeline import SpanRuler
|
|
from spacy.pipeline.ner import DEFAULT_NER_MODEL
|
|
from spacy.errors import MatchPatternError
|
|
from spacy.tests.util import make_tempdir
|
|
|
|
from thinc.api import NumpyOps, get_current_ops
|
|
|
|
ENTITY_RULERS = ["entity_ruler", "future_entity_ruler"]
|
|
|
|
|
|
@pytest.fixture
|
|
def nlp():
|
|
return Language()
|
|
|
|
|
|
@pytest.fixture
|
|
@registry.misc("entity_ruler_patterns")
|
|
def patterns():
|
|
return [
|
|
{"label": "HELLO", "pattern": "hello world"},
|
|
{"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]},
|
|
{"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]},
|
|
{"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]},
|
|
{"label": "TECH_ORG", "pattern": "Apple", "id": "a1"},
|
|
{"label": "TECH_ORG", "pattern": "Microsoft", "id": "a2"},
|
|
]
|
|
|
|
|
|
@Language.component("add_ent")
|
|
def add_ent_component(doc):
|
|
doc.ents = [Span(doc, 0, 3, label="ORG")]
|
|
return doc
|
|
|
|
|
|
@pytest.mark.issue(3345)
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_issue3345(entity_ruler_factory):
|
|
"""Test case where preset entity crosses sentence boundary."""
|
|
nlp = English()
|
|
doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"])
|
|
doc[4].is_sent_start = True
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
ruler.add_patterns([{"label": "GPE", "pattern": "New York"}])
|
|
cfg = {"model": DEFAULT_NER_MODEL}
|
|
model = registry.resolve(cfg, validate=True)["model"]
|
|
ner = EntityRecognizer(doc.vocab, model)
|
|
# Add the OUT action. I wouldn't have thought this would be necessary...
|
|
ner.moves.add_action(5, "")
|
|
ner.add_label("GPE")
|
|
doc = ruler(doc)
|
|
# Get into the state just before "New"
|
|
state = ner.moves.init_batch([doc])[0]
|
|
ner.moves.apply_transition(state, "O")
|
|
ner.moves.apply_transition(state, "O")
|
|
ner.moves.apply_transition(state, "O")
|
|
# Check that B-GPE is valid.
|
|
assert ner.moves.is_valid(state, "B-GPE")
|
|
|
|
|
|
@pytest.mark.issue(4849)
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_issue4849(entity_ruler_factory):
|
|
nlp = English()
|
|
patterns = [
|
|
{"label": "PERSON", "pattern": "joe biden", "id": "joe-biden"},
|
|
{"label": "PERSON", "pattern": "bernie sanders", "id": "bernie-sanders"},
|
|
]
|
|
ruler = nlp.add_pipe(
|
|
entity_ruler_factory,
|
|
name="entity_ruler",
|
|
config={"phrase_matcher_attr": "LOWER"},
|
|
)
|
|
ruler.add_patterns(patterns)
|
|
text = """
|
|
The left is starting to take aim at Democratic front-runner Joe Biden.
|
|
Sen. Bernie Sanders joined in her criticism: "There is no 'middle ground' when it comes to climate policy."
|
|
"""
|
|
# USING 1 PROCESS
|
|
count_ents = 0
|
|
for doc in nlp.pipe([text], n_process=1):
|
|
count_ents += len([ent for ent in doc.ents if ent.ent_id > 0])
|
|
assert count_ents == 2
|
|
# USING 2 PROCESSES
|
|
if isinstance(get_current_ops, NumpyOps):
|
|
count_ents = 0
|
|
for doc in nlp.pipe([text], n_process=2):
|
|
count_ents += len([ent for ent in doc.ents if ent.ent_id > 0])
|
|
assert count_ents == 2
|
|
|
|
|
|
@pytest.mark.issue(5918)
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_issue5918(entity_ruler_factory):
|
|
# Test edge case when merging entities.
|
|
nlp = English()
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
patterns = [
|
|
{"label": "ORG", "pattern": "Digicon Inc"},
|
|
{"label": "ORG", "pattern": "Rotan Mosle Inc's"},
|
|
{"label": "ORG", "pattern": "Rotan Mosle Technology Partners Ltd"},
|
|
]
|
|
ruler.add_patterns(patterns)
|
|
|
|
text = """
|
|
Digicon Inc said it has completed the previously-announced disposition
|
|
of its computer systems division to an investment group led by
|
|
Rotan Mosle Inc's Rotan Mosle Technology Partners Ltd affiliate.
|
|
"""
|
|
doc = nlp(text)
|
|
assert len(doc.ents) == 3
|
|
# make it so that the third span's head is within the entity (ent_iob=I)
|
|
# bug #5918 would wrongly transfer that I to the full entity, resulting in 2 instead of 3 final ents.
|
|
# TODO: test for logging here
|
|
# with pytest.warns(UserWarning):
|
|
# doc[29].head = doc[33]
|
|
doc = merge_entities(doc)
|
|
assert len(doc.ents) == 3
|
|
|
|
|
|
@pytest.mark.issue(8168)
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_issue8168(entity_ruler_factory):
|
|
nlp = English()
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
patterns = [
|
|
{"label": "ORG", "pattern": "Apple"},
|
|
{
|
|
"label": "GPE",
|
|
"pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}],
|
|
"id": "san-francisco",
|
|
},
|
|
{
|
|
"label": "GPE",
|
|
"pattern": [{"LOWER": "san"}, {"LOWER": "fran"}],
|
|
"id": "san-francisco",
|
|
},
|
|
]
|
|
ruler.add_patterns(patterns)
|
|
doc = nlp("San Francisco San Fran")
|
|
assert all(t.ent_id_ == "san-francisco" for t in doc)
|
|
|
|
|
|
@pytest.mark.issue(8216)
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_fix8216(nlp, patterns, entity_ruler_factory):
|
|
"""Test that patterns don't get added excessively."""
|
|
ruler = nlp.add_pipe(
|
|
entity_ruler_factory, name="entity_ruler", config={"validate": True}
|
|
)
|
|
ruler.add_patterns(patterns)
|
|
pattern_count = sum(len(mm) for mm in ruler.matcher._patterns.values())
|
|
assert pattern_count > 0
|
|
ruler.add_patterns([])
|
|
after_count = sum(len(mm) for mm in ruler.matcher._patterns.values())
|
|
assert after_count == pattern_count
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_init(nlp, patterns, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
ruler.add_patterns(patterns)
|
|
assert len(ruler) == len(patterns)
|
|
assert len(ruler.labels) == 4
|
|
assert "HELLO" in ruler
|
|
assert "BYE" in ruler
|
|
nlp.remove_pipe("entity_ruler")
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
ruler.add_patterns(patterns)
|
|
doc = nlp("hello world bye bye")
|
|
assert len(doc.ents) == 2
|
|
assert doc.ents[0].label_ == "HELLO"
|
|
assert doc.ents[1].label_ == "BYE"
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_no_patterns_warns(nlp, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
assert len(ruler) == 0
|
|
assert len(ruler.labels) == 0
|
|
nlp.remove_pipe("entity_ruler")
|
|
nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
assert nlp.pipe_names == ["entity_ruler"]
|
|
with pytest.warns(UserWarning):
|
|
doc = nlp("hello world bye bye")
|
|
assert len(doc.ents) == 0
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_init_patterns(nlp, patterns, entity_ruler_factory):
|
|
# initialize with patterns
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
assert len(ruler.labels) == 0
|
|
ruler.initialize(lambda: [], patterns=patterns)
|
|
assert len(ruler.labels) == 4
|
|
doc = nlp("hello world bye bye")
|
|
assert doc.ents[0].label_ == "HELLO"
|
|
assert doc.ents[1].label_ == "BYE"
|
|
nlp.remove_pipe("entity_ruler")
|
|
# initialize with patterns from misc registry
|
|
nlp.config["initialize"]["components"]["entity_ruler"] = {
|
|
"patterns": {"@misc": "entity_ruler_patterns"}
|
|
}
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
assert len(ruler.labels) == 0
|
|
nlp.initialize()
|
|
assert len(ruler.labels) == 4
|
|
doc = nlp("hello world bye bye")
|
|
assert doc.ents[0].label_ == "HELLO"
|
|
assert doc.ents[1].label_ == "BYE"
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_init_clear(nlp, patterns, entity_ruler_factory):
|
|
"""Test that initialization clears patterns."""
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
ruler.add_patterns(patterns)
|
|
assert len(ruler.labels) == 4
|
|
ruler.initialize(lambda: [])
|
|
assert len(ruler.labels) == 0
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_clear(nlp, patterns, entity_ruler_factory):
|
|
"""Test that initialization clears patterns."""
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
ruler.add_patterns(patterns)
|
|
assert len(ruler.labels) == 4
|
|
doc = nlp("hello world")
|
|
assert len(doc.ents) == 1
|
|
ruler.clear()
|
|
assert len(ruler.labels) == 0
|
|
with pytest.warns(UserWarning):
|
|
doc = nlp("hello world")
|
|
assert len(doc.ents) == 0
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_existing(nlp, patterns, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
ruler.add_patterns(patterns)
|
|
nlp.add_pipe("add_ent", before="entity_ruler")
|
|
doc = nlp("OH HELLO WORLD bye bye")
|
|
assert len(doc.ents) == 2
|
|
assert doc.ents[0].label_ == "ORG"
|
|
assert doc.ents[1].label_ == "BYE"
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_existing_overwrite(nlp, patterns, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(
|
|
entity_ruler_factory, name="entity_ruler", config={"overwrite_ents": True}
|
|
)
|
|
ruler.add_patterns(patterns)
|
|
nlp.add_pipe("add_ent", before="entity_ruler")
|
|
doc = nlp("OH HELLO WORLD bye bye")
|
|
assert len(doc.ents) == 2
|
|
assert doc.ents[0].label_ == "HELLO"
|
|
assert doc.ents[0].text == "HELLO"
|
|
assert doc.ents[1].label_ == "BYE"
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_existing_complex(nlp, patterns, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(
|
|
entity_ruler_factory, name="entity_ruler", config={"overwrite_ents": True}
|
|
)
|
|
ruler.add_patterns(patterns)
|
|
nlp.add_pipe("add_ent", before="entity_ruler")
|
|
doc = nlp("foo foo bye bye")
|
|
assert len(doc.ents) == 2
|
|
assert doc.ents[0].label_ == "COMPLEX"
|
|
assert doc.ents[1].label_ == "BYE"
|
|
assert len(doc.ents[0]) == 2
|
|
assert len(doc.ents[1]) == 2
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_entity_id(nlp, patterns, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(
|
|
entity_ruler_factory, name="entity_ruler", config={"overwrite_ents": True}
|
|
)
|
|
ruler.add_patterns(patterns)
|
|
doc = nlp("Apple is a technology company")
|
|
assert len(doc.ents) == 1
|
|
assert doc.ents[0].label_ == "TECH_ORG"
|
|
assert doc.ents[0].ent_id_ == "a1"
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_cfg_ent_id_sep(nlp, patterns, entity_ruler_factory):
|
|
config = {"overwrite_ents": True, "ent_id_sep": "**"}
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler", config=config)
|
|
ruler.add_patterns(patterns)
|
|
doc = nlp("Apple is a technology company")
|
|
if isinstance(ruler, EntityRuler):
|
|
assert "TECH_ORG**a1" in ruler.phrase_patterns
|
|
assert len(doc.ents) == 1
|
|
assert doc.ents[0].label_ == "TECH_ORG"
|
|
assert doc.ents[0].ent_id_ == "a1"
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_serialize_bytes(nlp, patterns, entity_ruler_factory):
|
|
ruler = EntityRuler(nlp, patterns=patterns)
|
|
assert len(ruler) == len(patterns)
|
|
assert len(ruler.labels) == 4
|
|
ruler_bytes = ruler.to_bytes()
|
|
new_ruler = EntityRuler(nlp)
|
|
assert len(new_ruler) == 0
|
|
assert len(new_ruler.labels) == 0
|
|
new_ruler = new_ruler.from_bytes(ruler_bytes)
|
|
assert len(new_ruler) == len(patterns)
|
|
assert len(new_ruler.labels) == 4
|
|
assert len(new_ruler.patterns) == len(ruler.patterns)
|
|
for pattern in ruler.patterns:
|
|
assert pattern in new_ruler.patterns
|
|
assert sorted(new_ruler.labels) == sorted(ruler.labels)
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_serialize_phrase_matcher_attr_bytes(
|
|
nlp, patterns, entity_ruler_factory
|
|
):
|
|
ruler = EntityRuler(nlp, phrase_matcher_attr="LOWER", patterns=patterns)
|
|
assert len(ruler) == len(patterns)
|
|
assert len(ruler.labels) == 4
|
|
ruler_bytes = ruler.to_bytes()
|
|
new_ruler = EntityRuler(nlp)
|
|
assert len(new_ruler) == 0
|
|
assert len(new_ruler.labels) == 0
|
|
assert new_ruler.phrase_matcher_attr is None
|
|
new_ruler = new_ruler.from_bytes(ruler_bytes)
|
|
assert len(new_ruler) == len(patterns)
|
|
assert len(new_ruler.labels) == 4
|
|
assert new_ruler.phrase_matcher_attr == "LOWER"
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_validate(nlp, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
validated_ruler = EntityRuler(nlp, validate=True)
|
|
|
|
valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]}
|
|
invalid_pattern = {"label": "HELLO", "pattern": [{"ASDF": "HELLO"}]}
|
|
|
|
# invalid pattern raises error without validate
|
|
with pytest.raises(ValueError):
|
|
ruler.add_patterns([invalid_pattern])
|
|
|
|
# valid pattern is added without errors with validate
|
|
validated_ruler.add_patterns([valid_pattern])
|
|
|
|
# invalid pattern raises error with validate
|
|
with pytest.raises(MatchPatternError):
|
|
validated_ruler.add_patterns([invalid_pattern])
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_properties(nlp, patterns, entity_ruler_factory):
|
|
ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
|
|
assert sorted(ruler.labels) == sorted(["HELLO", "BYE", "COMPLEX", "TECH_ORG"])
|
|
assert sorted(ruler.ent_ids) == ["a1", "a2"]
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_overlapping_spans(nlp, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
patterns = [
|
|
{"label": "FOOBAR", "pattern": "foo bar"},
|
|
{"label": "BARBAZ", "pattern": "bar baz"},
|
|
]
|
|
ruler.add_patterns(patterns)
|
|
doc = nlp("foo bar baz")
|
|
assert len(doc.ents) == 1
|
|
assert doc.ents[0].label_ == "FOOBAR"
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_fuzzy_pipe(nlp, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
patterns = [{"label": "HELLO", "pattern": [{"LOWER": {"FUZZY": "hello"}}]}]
|
|
ruler.add_patterns(patterns)
|
|
doc = nlp("helloo")
|
|
assert len(doc.ents) == 1
|
|
assert doc.ents[0].label_ == "HELLO"
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_fuzzy(nlp, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
patterns = [{"label": "HELLO", "pattern": [{"LOWER": {"FUZZY": "hello"}}]}]
|
|
ruler.add_patterns(patterns)
|
|
doc = nlp("helloo")
|
|
assert len(doc.ents) == 1
|
|
assert doc.ents[0].label_ == "HELLO"
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_fuzzy_disabled(nlp, entity_ruler_factory):
|
|
@registry.misc("test_fuzzy_compare_disabled")
|
|
def make_test_fuzzy_compare_disabled():
|
|
return lambda x, y, z: False
|
|
|
|
ruler = nlp.add_pipe(
|
|
entity_ruler_factory,
|
|
name="entity_ruler",
|
|
config={"matcher_fuzzy_compare": {"@misc": "test_fuzzy_compare_disabled"}},
|
|
)
|
|
patterns = [{"label": "HELLO", "pattern": [{"LOWER": {"FUZZY": "hello"}}]}]
|
|
ruler.add_patterns(patterns)
|
|
doc = nlp("helloo")
|
|
assert len(doc.ents) == 0
|
|
|
|
|
|
@pytest.mark.parametrize("n_process", [1, 2])
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_multiprocessing(nlp, n_process, entity_ruler_factory):
|
|
if isinstance(get_current_ops, NumpyOps) or n_process < 2:
|
|
texts = ["I enjoy eating Pizza Hut pizza."]
|
|
|
|
patterns = [{"label": "FASTFOOD", "pattern": "Pizza Hut", "id": "1234"}]
|
|
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
ruler.add_patterns(patterns)
|
|
|
|
for doc in nlp.pipe(texts, n_process=2):
|
|
for ent in doc.ents:
|
|
assert ent.ent_id_ == "1234"
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_serialize_jsonl(nlp, patterns, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
ruler.add_patterns(patterns)
|
|
with make_tempdir() as d:
|
|
ruler.to_disk(d / "test_ruler.jsonl")
|
|
ruler.from_disk(d / "test_ruler.jsonl") # read from an existing jsonl file
|
|
with pytest.raises(ValueError):
|
|
ruler.from_disk(d / "non_existing.jsonl") # read from a bad jsonl file
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_serialize_dir(nlp, patterns, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
ruler.add_patterns(patterns)
|
|
with make_tempdir() as d:
|
|
ruler.to_disk(d / "test_ruler")
|
|
ruler.from_disk(d / "test_ruler") # read from an existing directory
|
|
with pytest.raises(ValueError):
|
|
ruler.from_disk(d / "non_existing_dir") # read from a bad directory
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_remove_basic(nlp, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
patterns = [
|
|
{"label": "PERSON", "pattern": "Dina", "id": "dina"},
|
|
{"label": "ORG", "pattern": "ACME", "id": "acme"},
|
|
{"label": "ORG", "pattern": "ACM"},
|
|
]
|
|
ruler.add_patterns(patterns)
|
|
doc = nlp("Dina went to school")
|
|
assert len(ruler.patterns) == 3
|
|
assert len(doc.ents) == 1
|
|
if isinstance(ruler, EntityRuler):
|
|
assert "PERSON||dina" in ruler.phrase_matcher
|
|
assert doc.ents[0].label_ == "PERSON"
|
|
assert doc.ents[0].text == "Dina"
|
|
if isinstance(ruler, EntityRuler):
|
|
ruler.remove("dina")
|
|
else:
|
|
ruler.remove_by_id("dina")
|
|
doc = nlp("Dina went to school")
|
|
assert len(doc.ents) == 0
|
|
if isinstance(ruler, EntityRuler):
|
|
assert "PERSON||dina" not in ruler.phrase_matcher
|
|
assert len(ruler.patterns) == 2
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_remove_same_id_multiple_patterns(nlp, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
patterns = [
|
|
{"label": "PERSON", "pattern": "Dina", "id": "dina"},
|
|
{"label": "ORG", "pattern": "DinaCorp", "id": "dina"},
|
|
{"label": "ORG", "pattern": "ACME", "id": "acme"},
|
|
]
|
|
ruler.add_patterns(patterns)
|
|
doc = nlp("Dina founded DinaCorp and ACME.")
|
|
assert len(ruler.patterns) == 3
|
|
if isinstance(ruler, EntityRuler):
|
|
assert "PERSON||dina" in ruler.phrase_matcher
|
|
assert "ORG||dina" in ruler.phrase_matcher
|
|
assert len(doc.ents) == 3
|
|
if isinstance(ruler, EntityRuler):
|
|
ruler.remove("dina")
|
|
else:
|
|
ruler.remove_by_id("dina")
|
|
doc = nlp("Dina founded DinaCorp and ACME.")
|
|
assert len(ruler.patterns) == 1
|
|
if isinstance(ruler, EntityRuler):
|
|
assert "PERSON||dina" not in ruler.phrase_matcher
|
|
assert "ORG||dina" not in ruler.phrase_matcher
|
|
assert len(doc.ents) == 1
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_remove_nonexisting_pattern(nlp, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
patterns = [
|
|
{"label": "PERSON", "pattern": "Dina", "id": "dina"},
|
|
{"label": "ORG", "pattern": "ACME", "id": "acme"},
|
|
{"label": "ORG", "pattern": "ACM"},
|
|
]
|
|
ruler.add_patterns(patterns)
|
|
assert len(ruler.patterns) == 3
|
|
with pytest.raises(ValueError):
|
|
ruler.remove("nepattern")
|
|
if isinstance(ruler, SpanRuler):
|
|
with pytest.raises(ValueError):
|
|
ruler.remove_by_id("nepattern")
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_remove_several_patterns(nlp, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
patterns = [
|
|
{"label": "PERSON", "pattern": "Dina", "id": "dina"},
|
|
{"label": "ORG", "pattern": "ACME", "id": "acme"},
|
|
{"label": "ORG", "pattern": "ACM"},
|
|
]
|
|
ruler.add_patterns(patterns)
|
|
doc = nlp("Dina founded her company ACME.")
|
|
assert len(ruler.patterns) == 3
|
|
assert len(doc.ents) == 2
|
|
assert doc.ents[0].label_ == "PERSON"
|
|
assert doc.ents[0].text == "Dina"
|
|
assert doc.ents[1].label_ == "ORG"
|
|
assert doc.ents[1].text == "ACME"
|
|
if isinstance(ruler, EntityRuler):
|
|
ruler.remove("dina")
|
|
else:
|
|
ruler.remove_by_id("dina")
|
|
doc = nlp("Dina founded her company ACME")
|
|
assert len(ruler.patterns) == 2
|
|
assert len(doc.ents) == 1
|
|
assert doc.ents[0].label_ == "ORG"
|
|
assert doc.ents[0].text == "ACME"
|
|
if isinstance(ruler, EntityRuler):
|
|
ruler.remove("acme")
|
|
else:
|
|
ruler.remove_by_id("acme")
|
|
doc = nlp("Dina founded her company ACME")
|
|
assert len(ruler.patterns) == 1
|
|
assert len(doc.ents) == 0
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_remove_patterns_in_a_row(nlp, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
patterns = [
|
|
{"label": "PERSON", "pattern": "Dina", "id": "dina"},
|
|
{"label": "ORG", "pattern": "ACME", "id": "acme"},
|
|
{"label": "DATE", "pattern": "her birthday", "id": "bday"},
|
|
{"label": "ORG", "pattern": "ACM"},
|
|
]
|
|
ruler.add_patterns(patterns)
|
|
doc = nlp("Dina founded her company ACME on her birthday")
|
|
assert len(doc.ents) == 3
|
|
assert doc.ents[0].label_ == "PERSON"
|
|
assert doc.ents[0].text == "Dina"
|
|
assert doc.ents[1].label_ == "ORG"
|
|
assert doc.ents[1].text == "ACME"
|
|
assert doc.ents[2].label_ == "DATE"
|
|
assert doc.ents[2].text == "her birthday"
|
|
if isinstance(ruler, EntityRuler):
|
|
ruler.remove("dina")
|
|
ruler.remove("acme")
|
|
ruler.remove("bday")
|
|
else:
|
|
ruler.remove_by_id("dina")
|
|
ruler.remove_by_id("acme")
|
|
ruler.remove_by_id("bday")
|
|
doc = nlp("Dina went to school")
|
|
assert len(doc.ents) == 0
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_remove_all_patterns(nlp, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
patterns = [
|
|
{"label": "PERSON", "pattern": "Dina", "id": "dina"},
|
|
{"label": "ORG", "pattern": "ACME", "id": "acme"},
|
|
{"label": "DATE", "pattern": "her birthday", "id": "bday"},
|
|
]
|
|
ruler.add_patterns(patterns)
|
|
assert len(ruler.patterns) == 3
|
|
if isinstance(ruler, EntityRuler):
|
|
ruler.remove("dina")
|
|
else:
|
|
ruler.remove_by_id("dina")
|
|
assert len(ruler.patterns) == 2
|
|
if isinstance(ruler, EntityRuler):
|
|
ruler.remove("acme")
|
|
else:
|
|
ruler.remove_by_id("acme")
|
|
assert len(ruler.patterns) == 1
|
|
if isinstance(ruler, EntityRuler):
|
|
ruler.remove("bday")
|
|
else:
|
|
ruler.remove_by_id("bday")
|
|
assert len(ruler.patterns) == 0
|
|
with pytest.warns(UserWarning):
|
|
doc = nlp("Dina founded her company ACME on her birthday")
|
|
assert len(doc.ents) == 0
|
|
|
|
|
|
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
|
|
def test_entity_ruler_remove_and_add(nlp, entity_ruler_factory):
|
|
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
|
|
patterns = [{"label": "DATE", "pattern": "last time"}]
|
|
ruler.add_patterns(patterns)
|
|
doc = ruler(
|
|
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
|
|
)
|
|
assert len(ruler.patterns) == 1
|
|
assert len(doc.ents) == 1
|
|
assert doc.ents[0].label_ == "DATE"
|
|
assert doc.ents[0].text == "last time"
|
|
patterns1 = [{"label": "DATE", "pattern": "this time", "id": "ttime"}]
|
|
ruler.add_patterns(patterns1)
|
|
doc = ruler(
|
|
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
|
|
)
|
|
assert len(ruler.patterns) == 2
|
|
assert len(doc.ents) == 2
|
|
assert doc.ents[0].label_ == "DATE"
|
|
assert doc.ents[0].text == "last time"
|
|
assert doc.ents[1].label_ == "DATE"
|
|
assert doc.ents[1].text == "this time"
|
|
if isinstance(ruler, EntityRuler):
|
|
ruler.remove("ttime")
|
|
else:
|
|
ruler.remove_by_id("ttime")
|
|
doc = ruler(
|
|
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
|
|
)
|
|
assert len(ruler.patterns) == 1
|
|
assert len(doc.ents) == 1
|
|
assert doc.ents[0].label_ == "DATE"
|
|
assert doc.ents[0].text == "last time"
|
|
ruler.add_patterns(patterns1)
|
|
doc = ruler(
|
|
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
|
|
)
|
|
assert len(ruler.patterns) == 2
|
|
assert len(doc.ents) == 2
|
|
patterns2 = [{"label": "DATE", "pattern": "another time", "id": "ttime"}]
|
|
ruler.add_patterns(patterns2)
|
|
doc = ruler(
|
|
nlp.make_doc(
|
|
"I saw him last time we met, this time he brought some flowers, another time some chocolate."
|
|
)
|
|
)
|
|
assert len(ruler.patterns) == 3
|
|
assert len(doc.ents) == 3
|
|
if isinstance(ruler, EntityRuler):
|
|
ruler.remove("ttime")
|
|
else:
|
|
ruler.remove_by_id("ttime")
|
|
doc = ruler(
|
|
nlp.make_doc(
|
|
"I saw him last time we met, this time he brought some flowers, another time some chocolate."
|
|
)
|
|
)
|
|
assert len(ruler.patterns) == 1
|
|
assert len(doc.ents) == 1
|