mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Fix error ValueError: cannot resize an array that references or is referenced by another array in this way. Use the resize function * added spaCy Contributor Agreement
		
			
				
	
	
		
			1065 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			1065 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
# coding: utf8
 | 
						||
# cython: infer_types=True
 | 
						||
# cython: bounds_check=False
 | 
						||
# cython: profile=True
 | 
						||
from __future__ import unicode_literals
 | 
						||
 | 
						||
cimport cython
 | 
						||
cimport numpy as np
 | 
						||
import numpy
 | 
						||
import numpy.linalg
 | 
						||
import struct
 | 
						||
import dill
 | 
						||
import msgpack
 | 
						||
from thinc.neural.util import get_array_module, copy_array
 | 
						||
 | 
						||
from libc.string cimport memcpy, memset
 | 
						||
from libc.math cimport sqrt
 | 
						||
 | 
						||
from .span cimport Span
 | 
						||
from .token cimport Token
 | 
						||
from .span cimport Span
 | 
						||
from .token cimport Token
 | 
						||
from .printers import parse_tree
 | 
						||
from ..lexeme cimport Lexeme, EMPTY_LEXEME
 | 
						||
from ..typedefs cimport attr_t, flags_t
 | 
						||
from ..attrs import intify_attrs, IDS
 | 
						||
from ..attrs cimport attr_id_t
 | 
						||
from ..attrs cimport ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX, CLUSTER
 | 
						||
from ..attrs cimport LENGTH, POS, LEMMA, TAG, DEP, HEAD, SPACY, ENT_IOB
 | 
						||
from ..attrs cimport ENT_TYPE, SENT_START
 | 
						||
from ..parts_of_speech cimport CCONJ, PUNCT, NOUN, univ_pos_t
 | 
						||
from ..util import normalize_slice
 | 
						||
from ..compat import is_config, copy_reg, pickle, basestring_
 | 
						||
from ..errors import Errors, Warnings, deprecation_warning
 | 
						||
from .. import util
 | 
						||
from .underscore import Underscore, get_ext_args
 | 
						||
from ._retokenize import Retokenizer
 | 
						||
 | 
						||
DEF PADDING = 5
 | 
						||
 | 
						||
 | 
						||
cdef int bounds_check(int i, int length, int padding) except -1:
 | 
						||
    if (i + padding) < 0:
 | 
						||
        raise IndexError(Errors.E026.format(i=i, length=length))
 | 
						||
    if (i - padding) >= length:
 | 
						||
        raise IndexError(Errors.E026.format(i=i, length=length))
 | 
						||
 | 
						||
 | 
						||
cdef attr_t get_token_attr(const TokenC* token, attr_id_t feat_name) nogil:
 | 
						||
    if feat_name == LEMMA:
 | 
						||
        return token.lemma
 | 
						||
    elif feat_name == POS:
 | 
						||
        return token.pos
 | 
						||
    elif feat_name == TAG:
 | 
						||
        return token.tag
 | 
						||
    elif feat_name == DEP:
 | 
						||
        return token.dep
 | 
						||
    elif feat_name == HEAD:
 | 
						||
        return token.head
 | 
						||
    elif feat_name == SENT_START:
 | 
						||
        return token.sent_start
 | 
						||
    elif feat_name == SPACY:
 | 
						||
        return token.spacy
 | 
						||
    elif feat_name == ENT_IOB:
 | 
						||
        return token.ent_iob
 | 
						||
    elif feat_name == ENT_TYPE:
 | 
						||
        return token.ent_type
 | 
						||
    else:
 | 
						||
        return Lexeme.get_struct_attr(token.lex, feat_name)
 | 
						||
 | 
						||
 | 
						||
def _get_chunker(lang):
 | 
						||
    try:
 | 
						||
        cls = util.get_lang_class(lang)
 | 
						||
    except ImportError:
 | 
						||
        return None
 | 
						||
    except KeyError:
 | 
						||
        return None
 | 
						||
    return cls.Defaults.syntax_iterators.get(u'noun_chunks')
 | 
						||
 | 
						||
 | 
						||
cdef class Doc:
 | 
						||
    """A sequence of Token objects. Access sentences and named entities, export
 | 
						||
    annotations to numpy arrays, losslessly serialize to compressed binary
 | 
						||
    strings. The `Doc` object holds an array of `TokenC` structs. The
 | 
						||
    Python-level `Token` and `Span` objects are views of this array, i.e.
 | 
						||
    they don't own the data themselves.
 | 
						||
 | 
						||
    EXAMPLE: Construction 1
 | 
						||
        >>> doc = nlp(u'Some text')
 | 
						||
 | 
						||
        Construction 2
 | 
						||
        >>> from spacy.tokens import Doc
 | 
						||
        >>> doc = Doc(nlp.vocab, words=[u'hello', u'world', u'!'],
 | 
						||
                      spaces=[True, False, False])
 | 
						||
    """
 | 
						||
    @classmethod
 | 
						||
    def set_extension(cls, name, **kwargs):
 | 
						||
        if cls.has_extension(name) and not kwargs.get('force', False):
 | 
						||
            raise ValueError(Errors.E090.format(name=name, obj='Doc'))
 | 
						||
        Underscore.doc_extensions[name] = get_ext_args(**kwargs)
 | 
						||
 | 
						||
    @classmethod
 | 
						||
    def get_extension(cls, name):
 | 
						||
        return Underscore.doc_extensions.get(name)
 | 
						||
 | 
						||
    @classmethod
 | 
						||
    def has_extension(cls, name):
 | 
						||
        return name in Underscore.doc_extensions
 | 
						||
 | 
						||
    @classmethod
 | 
						||
    def remove_extension(cls, name):
 | 
						||
        if not cls.has_extension(name):
 | 
						||
            raise ValueError(Errors.E046.format(name=name))
 | 
						||
        return Underscore.doc_extensions.pop(name)
 | 
						||
 | 
						||
    def __init__(self, Vocab vocab, words=None, spaces=None, user_data=None,
 | 
						||
                 orths_and_spaces=None):
 | 
						||
        """Create a Doc object.
 | 
						||
 | 
						||
        vocab (Vocab): A vocabulary object, which must match any models you
 | 
						||
            want to use (e.g. tokenizer, parser, entity recognizer).
 | 
						||
        words (list or None): A list of unicode strings to add to the document
 | 
						||
            as words. If `None`, defaults to empty list.
 | 
						||
        spaces (list or None): A list of boolean values, of the same length as
 | 
						||
            words. True means that the word is followed by a space, False means
 | 
						||
            it is not. If `None`, defaults to `[True]*len(words)`
 | 
						||
        user_data (dict or None): Optional extra data to attach to the Doc.
 | 
						||
        RETURNS (Doc): The newly constructed object.
 | 
						||
        """
 | 
						||
        self.vocab = vocab
 | 
						||
        size = 20
 | 
						||
        self.mem = Pool()
 | 
						||
        # Guarantee self.lex[i-x], for any i >= 0 and x < padding is in bounds
 | 
						||
        # However, we need to remember the true starting places, so that we can
 | 
						||
        # realloc.
 | 
						||
        data_start = <TokenC*>self.mem.alloc(size + (PADDING*2), sizeof(TokenC))
 | 
						||
        cdef int i
 | 
						||
        for i in range(size + (PADDING*2)):
 | 
						||
            data_start[i].lex = &EMPTY_LEXEME
 | 
						||
            data_start[i].l_edge = i
 | 
						||
            data_start[i].r_edge = i
 | 
						||
        self.c = data_start + PADDING
 | 
						||
        self.max_length = size
 | 
						||
        self.length = 0
 | 
						||
        self.is_tagged = False
 | 
						||
        self.is_parsed = False
 | 
						||
        self.sentiment = 0.0
 | 
						||
        self.cats = {}
 | 
						||
        self.user_hooks = {}
 | 
						||
        self.user_token_hooks = {}
 | 
						||
        self.user_span_hooks = {}
 | 
						||
        self.tensor = numpy.zeros((0,), dtype='float32')
 | 
						||
        self.user_data = {} if user_data is None else user_data
 | 
						||
        self._vector = None
 | 
						||
        self.noun_chunks_iterator = _get_chunker(self.vocab.lang)
 | 
						||
        cdef unicode orth
 | 
						||
        cdef bint has_space
 | 
						||
        if orths_and_spaces is None and words is not None:
 | 
						||
            if spaces is None:
 | 
						||
                spaces = [True] * len(words)
 | 
						||
            elif len(spaces) != len(words):
 | 
						||
                raise ValueError(Errors.E027)
 | 
						||
            orths_and_spaces = zip(words, spaces)
 | 
						||
        if orths_and_spaces is not None:
 | 
						||
            for orth_space in orths_and_spaces:
 | 
						||
                if isinstance(orth_space, unicode):
 | 
						||
                    orth = orth_space
 | 
						||
                    has_space = True
 | 
						||
                elif isinstance(orth_space, bytes):
 | 
						||
                    raise ValueError(Errors.E028.format(value=orth_space))
 | 
						||
                else:
 | 
						||
                    orth, has_space = orth_space
 | 
						||
                # Note that we pass self.mem here --- we have ownership, if LexemeC
 | 
						||
                # must be created.
 | 
						||
                self.push_back(
 | 
						||
                    <const LexemeC*>self.vocab.get(self.mem, orth), has_space)
 | 
						||
        # Tough to decide on policy for this. Is an empty doc tagged and parsed?
 | 
						||
        # There's no information we'd like to add to it, so I guess so?
 | 
						||
        if self.length == 0:
 | 
						||
            self.is_tagged = True
 | 
						||
            self.is_parsed = True
 | 
						||
 | 
						||
    @property
 | 
						||
    def _(self):
 | 
						||
        return Underscore(Underscore.doc_extensions, self)
 | 
						||
 | 
						||
    @property
 | 
						||
    def is_sentenced(self):
 | 
						||
        # Check if the document has sentence boundaries,
 | 
						||
        # i.e at least one tok has the sent_start in (-1, 1)
 | 
						||
        if 'sents' in self.user_hooks:
 | 
						||
            return True
 | 
						||
        if self.is_parsed:
 | 
						||
            return True
 | 
						||
        for i in range(self.length):
 | 
						||
            if self.c[i].sent_start == -1 or self.c[i].sent_start == 1:
 | 
						||
                return True
 | 
						||
        else:
 | 
						||
            return False
 | 
						||
 | 
						||
    def __getitem__(self, object i):
 | 
						||
        """Get a `Token` or `Span` object.
 | 
						||
 | 
						||
        i (int or tuple) The index of the token, or the slice of the document
 | 
						||
            to get.
 | 
						||
        RETURNS (Token or Span): The token at `doc[i]]`, or the span at
 | 
						||
            `doc[start : end]`.
 | 
						||
 | 
						||
        EXAMPLE:
 | 
						||
            >>> doc[i]
 | 
						||
            Get the `Token` object at position `i`, where `i` is an integer.
 | 
						||
            Negative indexing is supported, and follows the usual Python
 | 
						||
            semantics, i.e. `doc[-2]` is `doc[len(doc) - 2]`.
 | 
						||
 | 
						||
            >>> doc[start : end]]
 | 
						||
            Get a `Span` object, starting at position `start` and ending at
 | 
						||
            position `end`, where `start` and `end` are token indices. For
 | 
						||
            instance, `doc[2:5]` produces a span consisting of tokens 2, 3 and
 | 
						||
            4. Stepped slices (e.g. `doc[start : end : step]`) are not
 | 
						||
            supported, as `Span` objects must be contiguous (cannot have gaps).
 | 
						||
            You can use negative indices and open-ended ranges, which have
 | 
						||
            their normal Python semantics.
 | 
						||
        """
 | 
						||
        if isinstance(i, slice):
 | 
						||
            start, stop = normalize_slice(len(self), i.start, i.stop, i.step)
 | 
						||
            return Span(self, start, stop, label=0)
 | 
						||
 | 
						||
        if i < 0:
 | 
						||
            i = self.length + i
 | 
						||
        bounds_check(i, self.length, PADDING)
 | 
						||
        return Token.cinit(self.vocab, &self.c[i], i, self)
 | 
						||
 | 
						||
    def __iter__(self):
 | 
						||
        """Iterate over `Token`  objects, from which the annotations can be
 | 
						||
        easily accessed. This is the main way of accessing `Token` objects,
 | 
						||
        which are the main way annotations are accessed from Python. If faster-
 | 
						||
        than-Python speeds are required, you can instead access the annotations
 | 
						||
        as a numpy array, or access the underlying C data directly from Cython.
 | 
						||
 | 
						||
        EXAMPLE:
 | 
						||
            >>> for token in doc
 | 
						||
        """
 | 
						||
        cdef int i
 | 
						||
        for i in range(self.length):
 | 
						||
            yield Token.cinit(self.vocab, &self.c[i], i, self)
 | 
						||
 | 
						||
    def __len__(self):
 | 
						||
        """The number of tokens in the document.
 | 
						||
 | 
						||
        RETURNS (int): The number of tokens in the document.
 | 
						||
 | 
						||
        EXAMPLE:
 | 
						||
            >>> len(doc)
 | 
						||
        """
 | 
						||
        return self.length
 | 
						||
 | 
						||
    def __unicode__(self):
 | 
						||
        return u''.join([t.text_with_ws for t in self])
 | 
						||
 | 
						||
    def __bytes__(self):
 | 
						||
        return u''.join([t.text_with_ws for t in self]).encode('utf-8')
 | 
						||
 | 
						||
    def __str__(self):
 | 
						||
        if is_config(python3=True):
 | 
						||
            return self.__unicode__()
 | 
						||
        return self.__bytes__()
 | 
						||
 | 
						||
    def __repr__(self):
 | 
						||
        return self.__str__()
 | 
						||
 | 
						||
    @property
 | 
						||
    def doc(self):
 | 
						||
        return self
 | 
						||
 | 
						||
    def char_span(self, int start_idx, int end_idx, label=0, vector=None):
 | 
						||
        """Create a `Span` object from the slice `doc.text[start : end]`.
 | 
						||
 | 
						||
        doc (Doc): The parent document.
 | 
						||
        start (int): The index of the first character of the span.
 | 
						||
        end (int): The index of the first character after the span.
 | 
						||
        label (uint64 or string): A label to attach to the Span, e.g. for
 | 
						||
            named entities.
 | 
						||
        vector (ndarray[ndim=1, dtype='float32']): A meaning representation of
 | 
						||
            the span.
 | 
						||
        RETURNS (Span): The newly constructed object.
 | 
						||
        """
 | 
						||
        if not isinstance(label, int):
 | 
						||
            label = self.vocab.strings.add(label)
 | 
						||
        cdef int start = token_by_start(self.c, self.length, start_idx)
 | 
						||
        if start == -1:
 | 
						||
            return None
 | 
						||
        cdef int end = token_by_end(self.c, self.length, end_idx)
 | 
						||
        if end == -1:
 | 
						||
            return None
 | 
						||
        # Currently we have the token index, we want the range-end index
 | 
						||
        end += 1
 | 
						||
        cdef Span span = Span(self, start, end, label=label, vector=vector)
 | 
						||
        return span
 | 
						||
 | 
						||
    def similarity(self, other):
 | 
						||
        """Make a semantic similarity estimate. The default estimate is cosine
 | 
						||
        similarity using an average of word vectors.
 | 
						||
 | 
						||
        other (object): The object to compare with. By default, accepts `Doc`,
 | 
						||
            `Span`, `Token` and `Lexeme` objects.
 | 
						||
        RETURNS (float): A scalar similarity score. Higher is more similar.
 | 
						||
        """
 | 
						||
        if 'similarity' in self.user_hooks:
 | 
						||
            return self.user_hooks['similarity'](self, other)
 | 
						||
        if isinstance(other, (Lexeme, Token)) and self.length == 1:
 | 
						||
            if self.c[0].lex.orth == other.orth:
 | 
						||
                return 1.0
 | 
						||
        elif isinstance(other, (Span, Doc)):
 | 
						||
            if len(self) == len(other):
 | 
						||
                for i in range(self.length):
 | 
						||
                    if self[i].orth != other[i].orth:
 | 
						||
                        break
 | 
						||
                else:
 | 
						||
                    return 1.0
 | 
						||
 | 
						||
        if self.vector_norm == 0 or other.vector_norm == 0:
 | 
						||
            return 0.0
 | 
						||
        return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm)
 | 
						||
 | 
						||
    property has_vector:
 | 
						||
        """A boolean value indicating whether a word vector is associated with
 | 
						||
        the object.
 | 
						||
 | 
						||
        RETURNS (bool): Whether a word vector is associated with the object.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            if 'has_vector' in self.user_hooks:
 | 
						||
                return self.user_hooks['has_vector'](self)
 | 
						||
            elif self.vocab.vectors.data.size:
 | 
						||
                return True
 | 
						||
            elif self.tensor.size:
 | 
						||
                return True
 | 
						||
            else:
 | 
						||
                return False
 | 
						||
 | 
						||
    property vector:
 | 
						||
        """A real-valued meaning representation. Defaults to an average of the
 | 
						||
        token vectors.
 | 
						||
 | 
						||
        RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
 | 
						||
            representing the document's semantics.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            if 'vector' in self.user_hooks:
 | 
						||
                return self.user_hooks['vector'](self)
 | 
						||
            if self._vector is not None:
 | 
						||
                return self._vector
 | 
						||
            elif not len(self):
 | 
						||
                self._vector = numpy.zeros((self.vocab.vectors_length,),
 | 
						||
                                           dtype='f')
 | 
						||
                return self._vector
 | 
						||
            elif self.vocab.vectors.data.size > 0:
 | 
						||
                vector = numpy.zeros((self.vocab.vectors_length,), dtype='f')
 | 
						||
                for token in self.c[:self.length]:
 | 
						||
                    vector += self.vocab.get_vector(token.lex.orth)
 | 
						||
                self._vector = vector / len(self)
 | 
						||
                return self._vector
 | 
						||
            elif self.tensor.size > 0:
 | 
						||
                self._vector = self.tensor.mean(axis=0)
 | 
						||
                return self._vector
 | 
						||
            else:
 | 
						||
                return numpy.zeros((self.vocab.vectors_length,),
 | 
						||
                                   dtype='float32')
 | 
						||
 | 
						||
        def __set__(self, value):
 | 
						||
            self._vector = value
 | 
						||
 | 
						||
    property vector_norm:
 | 
						||
        """The L2 norm of the document's vector representation.
 | 
						||
 | 
						||
        RETURNS (float): The L2 norm of the vector representation.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            if 'vector_norm' in self.user_hooks:
 | 
						||
                return self.user_hooks['vector_norm'](self)
 | 
						||
            cdef float value
 | 
						||
            cdef double norm = 0
 | 
						||
            if self._vector_norm is None:
 | 
						||
                norm = 0.0
 | 
						||
                for value in self.vector:
 | 
						||
                    norm += value * value
 | 
						||
                self._vector_norm = sqrt(norm) if norm != 0 else 0
 | 
						||
            return self._vector_norm
 | 
						||
 | 
						||
        def __set__(self, value):
 | 
						||
            self._vector_norm = value
 | 
						||
 | 
						||
    property text:
 | 
						||
        """A unicode representation of the document text.
 | 
						||
 | 
						||
        RETURNS (unicode): The original verbatim text of the document.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            return u''.join(t.text_with_ws for t in self)
 | 
						||
 | 
						||
    property text_with_ws:
 | 
						||
        """An alias of `Doc.text`, provided for duck-type compatibility with
 | 
						||
        `Span` and `Token`.
 | 
						||
 | 
						||
        RETURNS (unicode): The original verbatim text of the document.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            return self.text
 | 
						||
 | 
						||
    property ents:
 | 
						||
        """Iterate over the entities in the document. Yields named-entity
 | 
						||
        `Span` objects, if the entity recognizer has been applied to the
 | 
						||
        document.
 | 
						||
 | 
						||
        YIELDS (Span): Entities in the document.
 | 
						||
 | 
						||
        EXAMPLE: Iterate over the span to get individual Token objects,
 | 
						||
            or access the label:
 | 
						||
 | 
						||
            >>> tokens = nlp(u'Mr. Best flew to New York on Saturday morning.')
 | 
						||
            >>> ents = list(tokens.ents)
 | 
						||
            >>> assert ents[0].label == 346
 | 
						||
            >>> assert ents[0].label_ == 'PERSON'
 | 
						||
            >>> assert ents[0].orth_ == 'Best'
 | 
						||
            >>> assert ents[0].text == 'Mr. Best'
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            cdef int i
 | 
						||
            cdef const TokenC* token
 | 
						||
            cdef int start = -1
 | 
						||
            cdef attr_t label = 0
 | 
						||
            output = []
 | 
						||
            for i in range(self.length):
 | 
						||
                token = &self.c[i]
 | 
						||
                if token.ent_iob == 1:
 | 
						||
                    if start == -1:
 | 
						||
                        seq = ['%s|%s' % (t.text, t.ent_iob_) for t in self[i-5:i+5]]
 | 
						||
                        raise ValueError(Errors.E093.format(seq=' '.join(seq)))
 | 
						||
                elif token.ent_iob == 2 or token.ent_iob == 0:
 | 
						||
                    if start != -1:
 | 
						||
                        output.append(Span(self, start, i, label=label))
 | 
						||
                    start = -1
 | 
						||
                    label = 0
 | 
						||
                elif token.ent_iob == 3:
 | 
						||
                    if start != -1:
 | 
						||
                        output.append(Span(self, start, i, label=label))
 | 
						||
                    start = i
 | 
						||
                    label = token.ent_type
 | 
						||
            if start != -1:
 | 
						||
                output.append(Span(self, start, self.length, label=label))
 | 
						||
            return tuple(output)
 | 
						||
 | 
						||
        def __set__(self, ents):
 | 
						||
            # TODO:
 | 
						||
            # 1. Allow negative matches
 | 
						||
            # 2. Ensure pre-set NERs are not over-written during statistical
 | 
						||
            #    prediction
 | 
						||
            # 3. Test basic data-driven ORTH gazetteer
 | 
						||
            # 4. Test more nuanced date and currency regex
 | 
						||
            cdef int i
 | 
						||
            for i in range(self.length):
 | 
						||
                self.c[i].ent_type = 0
 | 
						||
                self.c[i].ent_iob = 0  # Means missing.
 | 
						||
            cdef attr_t ent_type
 | 
						||
            cdef int start, end
 | 
						||
            for ent_info in ents:
 | 
						||
                if isinstance(ent_info, Span):
 | 
						||
                    ent_id = ent_info.ent_id
 | 
						||
                    ent_type = ent_info.label
 | 
						||
                    start = ent_info.start
 | 
						||
                    end = ent_info.end
 | 
						||
                elif len(ent_info) == 3:
 | 
						||
                    ent_type, start, end = ent_info
 | 
						||
                else:
 | 
						||
                    ent_id, ent_type, start, end = ent_info
 | 
						||
                if ent_type is None or ent_type < 0:
 | 
						||
                    # Mark as O
 | 
						||
                    for i in range(start, end):
 | 
						||
                        self.c[i].ent_type = 0
 | 
						||
                        self.c[i].ent_iob = 2
 | 
						||
                else:
 | 
						||
                    # Mark (inside) as I
 | 
						||
                    for i in range(start, end):
 | 
						||
                        self.c[i].ent_type = ent_type
 | 
						||
                        self.c[i].ent_iob = 1
 | 
						||
                    # Set start as B
 | 
						||
                    self.c[start].ent_iob = 3
 | 
						||
 | 
						||
    property noun_chunks:
 | 
						||
        """Iterate over the base noun phrases in the document. Yields base
 | 
						||
        noun-phrase #[code Span] objects, if the document has been
 | 
						||
        syntactically parsed. A base noun phrase, or "NP chunk", is a noun
 | 
						||
        phrase that does not permit other NPs to be nested within it – so no
 | 
						||
        NP-level coordination, no prepositional phrases, and no relative
 | 
						||
        clauses.
 | 
						||
 | 
						||
        YIELDS (Span): Noun chunks in the document.
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            if not self.is_parsed:
 | 
						||
                raise ValueError(Errors.E029)
 | 
						||
            # Accumulate the result before beginning to iterate over it. This
 | 
						||
            # prevents the tokenisation from being changed out from under us
 | 
						||
            # during the iteration. The tricky thing here is that Span accepts
 | 
						||
            # its tokenisation changing, so it's okay once we have the Span
 | 
						||
            # objects. See Issue #375.
 | 
						||
            spans = []
 | 
						||
            if self.noun_chunks_iterator is not None:
 | 
						||
                for start, end, label in self.noun_chunks_iterator(self):
 | 
						||
                    spans.append(Span(self, start, end, label=label))
 | 
						||
            for span in spans:
 | 
						||
                yield span
 | 
						||
 | 
						||
    property sents:
 | 
						||
        """Iterate over the sentences in the document. Yields sentence `Span`
 | 
						||
        objects. Sentence spans have no label. To improve accuracy on informal
 | 
						||
        texts, spaCy calculates sentence boundaries from the syntactic
 | 
						||
        dependency parse. If the parser is disabled, the `sents` iterator will
 | 
						||
        be unavailable.
 | 
						||
 | 
						||
        EXAMPLE:
 | 
						||
            >>> doc = nlp("This is a sentence. Here's another...")
 | 
						||
            >>> assert [s.root.text for s in doc.sents] == ["is", "'s"]
 | 
						||
        """
 | 
						||
        def __get__(self):
 | 
						||
            if not self.is_sentenced:
 | 
						||
                raise ValueError(Errors.E030)
 | 
						||
            if 'sents' in self.user_hooks:
 | 
						||
                yield from self.user_hooks['sents'](self)
 | 
						||
            else:
 | 
						||
                start = 0
 | 
						||
                for i in range(1, self.length):
 | 
						||
                    if self.c[i].sent_start == 1:
 | 
						||
                        yield Span(self, start, i)
 | 
						||
                        start = i
 | 
						||
                if start != self.length:
 | 
						||
                    yield Span(self, start, self.length)
 | 
						||
 | 
						||
    cdef int push_back(self, LexemeOrToken lex_or_tok, bint has_space) except -1:
 | 
						||
        if self.length == 0:
 | 
						||
            # Flip these to false when we see the first token.
 | 
						||
            self.is_tagged = False
 | 
						||
            self.is_parsed = False
 | 
						||
        if self.length == self.max_length:
 | 
						||
            self._realloc(self.length * 2)
 | 
						||
        cdef TokenC* t = &self.c[self.length]
 | 
						||
        if LexemeOrToken is const_TokenC_ptr:
 | 
						||
            t[0] = lex_or_tok[0]
 | 
						||
        else:
 | 
						||
            t.lex = lex_or_tok
 | 
						||
        if self.length == 0:
 | 
						||
            t.idx = 0
 | 
						||
        else:
 | 
						||
            t.idx = (t-1).idx + (t-1).lex.length + (t-1).spacy
 | 
						||
        t.l_edge = self.length
 | 
						||
        t.r_edge = self.length
 | 
						||
        if t.lex.orth == 0:
 | 
						||
            raise ValueError(Errors.E031.format(i=self.length))
 | 
						||
        t.spacy = has_space
 | 
						||
        self.length += 1
 | 
						||
        return t.idx + t.lex.length + t.spacy
 | 
						||
 | 
						||
    @cython.boundscheck(False)
 | 
						||
    cpdef np.ndarray to_array(self, object py_attr_ids):
 | 
						||
        """Export given token attributes to a numpy `ndarray`.
 | 
						||
        If `attr_ids` is a sequence of M attributes, the output array will be
 | 
						||
        of shape `(N, M)`, where N is the length of the `Doc` (in tokens). If
 | 
						||
        `attr_ids` is a single attribute, the output shape will be (N,). You
 | 
						||
        can specify attributes by integer ID (e.g. spacy.attrs.LEMMA) or
 | 
						||
        string name (e.g. 'LEMMA' or 'lemma').
 | 
						||
 | 
						||
        attr_ids (list[]): A list of attributes (int IDs or string names).
 | 
						||
        RETURNS (numpy.ndarray[long, ndim=2]): A feature matrix, with one row
 | 
						||
            per word, and one column per attribute indicated in the input
 | 
						||
            `attr_ids`.
 | 
						||
 | 
						||
        EXAMPLE:
 | 
						||
            >>> from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
 | 
						||
            >>> doc = nlp(text)
 | 
						||
            >>> # All strings mapped to integers, for easy export to numpy
 | 
						||
            >>> np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
 | 
						||
        """
 | 
						||
        cdef int i, j
 | 
						||
        cdef attr_id_t feature
 | 
						||
        cdef np.ndarray[attr_t, ndim=2] output
 | 
						||
        # Handle scalar/list inputs of strings/ints for py_attr_ids
 | 
						||
        if not hasattr(py_attr_ids, '__iter__') \
 | 
						||
        and not isinstance(py_attr_ids, basestring_):
 | 
						||
            py_attr_ids = [py_attr_ids]
 | 
						||
 | 
						||
        # Allow strings, e.g. 'lemma' or 'LEMMA'
 | 
						||
        py_attr_ids = [(IDS[id_.upper()] if hasattr(id_, 'upper') else id_)
 | 
						||
                       for id_ in py_attr_ids]
 | 
						||
        # Make an array from the attributes --- otherwise our inner loop is
 | 
						||
        # Python dict iteration.
 | 
						||
        cdef np.ndarray attr_ids = numpy.asarray(py_attr_ids, dtype='i')
 | 
						||
        output = numpy.ndarray(shape=(self.length, len(attr_ids)),
 | 
						||
                               dtype=numpy.uint64)
 | 
						||
        c_output = <attr_t*>output.data
 | 
						||
        c_attr_ids = <attr_id_t*>attr_ids.data
 | 
						||
        cdef TokenC* token
 | 
						||
        cdef int nr_attr = attr_ids.shape[0]
 | 
						||
        for i in range(self.length):
 | 
						||
            token = &self.c[i]
 | 
						||
            for j in range(nr_attr):
 | 
						||
                c_output[i*nr_attr + j] = get_token_attr(token, c_attr_ids[j])
 | 
						||
        # Handle 1d case
 | 
						||
        return output if len(attr_ids) >= 2 else output.reshape((self.length,))
 | 
						||
 | 
						||
    def count_by(self, attr_id_t attr_id, exclude=None,
 | 
						||
                 PreshCounter counts=None):
 | 
						||
        """Count the frequencies of a given attribute. Produces a dict of
 | 
						||
        `{attribute (int): count (ints)}` frequencies, keyed by the values of
 | 
						||
        the given attribute ID.
 | 
						||
 | 
						||
        attr_id (int): The attribute ID to key the counts.
 | 
						||
        RETURNS (dict): A dictionary mapping attributes to integer counts.
 | 
						||
 | 
						||
        EXAMPLE:
 | 
						||
            >>> from spacy import attrs
 | 
						||
            >>> doc = nlp(u'apple apple orange banana')
 | 
						||
            >>> tokens.count_by(attrs.ORTH)
 | 
						||
            {12800L: 1, 11880L: 2, 7561L: 1}
 | 
						||
            >>> tokens.to_array([attrs.ORTH])
 | 
						||
            array([[11880], [11880], [7561], [12800]])
 | 
						||
        """
 | 
						||
        cdef int i
 | 
						||
        cdef attr_t attr
 | 
						||
        cdef size_t count
 | 
						||
 | 
						||
        if counts is None:
 | 
						||
            counts = PreshCounter()
 | 
						||
            output_dict = True
 | 
						||
        else:
 | 
						||
            output_dict = False
 | 
						||
        # Take this check out of the loop, for a bit of extra speed
 | 
						||
        if exclude is None:
 | 
						||
            for i in range(self.length):
 | 
						||
                counts.inc(get_token_attr(&self.c[i], attr_id), 1)
 | 
						||
        else:
 | 
						||
            for i in range(self.length):
 | 
						||
                if not exclude(self[i]):
 | 
						||
                    attr = get_token_attr(&self.c[i], attr_id)
 | 
						||
                    counts.inc(attr, 1)
 | 
						||
        if output_dict:
 | 
						||
            return dict(counts)
 | 
						||
 | 
						||
    def _realloc(self, new_size):
 | 
						||
        self.max_length = new_size
 | 
						||
        n = new_size + (PADDING * 2)
 | 
						||
        # What we're storing is a "padded" array. We've jumped forward PADDING
 | 
						||
        # places, and are storing the pointer to that. This way, we can access
 | 
						||
        # words out-of-bounds, and get out-of-bounds markers.
 | 
						||
        # Now that we want to realloc, we need the address of the true start,
 | 
						||
        # so we jump the pointer back PADDING places.
 | 
						||
        cdef TokenC* data_start = self.c - PADDING
 | 
						||
        data_start = <TokenC*>self.mem.realloc(data_start, n * sizeof(TokenC))
 | 
						||
        self.c = data_start + PADDING
 | 
						||
        cdef int i
 | 
						||
        for i in range(self.length, self.max_length + PADDING):
 | 
						||
            self.c[i].lex = &EMPTY_LEXEME
 | 
						||
 | 
						||
    cdef void set_parse(self, const TokenC* parsed) nogil:
 | 
						||
        # TODO: This method is fairly misleading atm. It's used by Parser
 | 
						||
        # to actually apply the parse calculated. Need to rethink this.
 | 
						||
 | 
						||
        # Probably we should use from_array?
 | 
						||
        self.is_parsed = True
 | 
						||
        for i in range(self.length):
 | 
						||
            self.c[i] = parsed[i]
 | 
						||
 | 
						||
    def from_array(self, attrs, array):
 | 
						||
        if SENT_START in attrs and HEAD in attrs:
 | 
						||
            raise ValueError(Errors.E032)
 | 
						||
        cdef int i, col
 | 
						||
        cdef attr_id_t attr_id
 | 
						||
        cdef TokenC* tokens = self.c
 | 
						||
        cdef int length = len(array)
 | 
						||
        # Get set up for fast loading
 | 
						||
        cdef Pool mem = Pool()
 | 
						||
        cdef int n_attrs = len(attrs)
 | 
						||
        attr_ids = <attr_id_t*>mem.alloc(n_attrs, sizeof(attr_id_t))
 | 
						||
        for i, attr_id in enumerate(attrs):
 | 
						||
            attr_ids[i] = attr_id
 | 
						||
        # Now load the data
 | 
						||
        for i in range(self.length):
 | 
						||
            token = &self.c[i]
 | 
						||
            for j in range(n_attrs):
 | 
						||
                Token.set_struct_attr(token, attr_ids[j], array[i, j])
 | 
						||
        # Auxiliary loading logic
 | 
						||
        for col, attr_id in enumerate(attrs):
 | 
						||
            if attr_id == TAG:
 | 
						||
                for i in range(length):
 | 
						||
                    if array[i, col] != 0:
 | 
						||
                        self.vocab.morphology.assign_tag(&tokens[i], array[i, col])
 | 
						||
        # set flags
 | 
						||
        self.is_parsed = bool(HEAD in attrs or DEP in attrs)
 | 
						||
        self.is_tagged = bool(TAG in attrs or POS in attrs)
 | 
						||
        # if document is parsed, set children
 | 
						||
        if self.is_parsed:
 | 
						||
            set_children_from_heads(self.c, self.length)
 | 
						||
        return self
 | 
						||
 | 
						||
    def get_lca_matrix(self):
 | 
						||
        """Calculates the lowest common ancestor matrix for a given `Doc`.
 | 
						||
        Returns LCA matrix containing the integer index of the ancestor, or -1
 | 
						||
        if no common ancestor is found (ex if span excludes a necessary
 | 
						||
        ancestor). Apologies about the recursion, but the impact on
 | 
						||
        performance is negligible given the natural limitations on the depth
 | 
						||
        of a typical human sentence.
 | 
						||
        """
 | 
						||
        # Efficiency notes:
 | 
						||
        # We can easily improve the performance here by iterating in Cython.
 | 
						||
        # To loop over the tokens in Cython, the easiest way is:
 | 
						||
        # for token in doc.c[:doc.c.length]:
 | 
						||
        #     head = token + token.head
 | 
						||
        # Both token and head will be TokenC* here. The token.head attribute
 | 
						||
        # is an integer offset.
 | 
						||
        def __pairwise_lca(token_j, token_k, lca_matrix):
 | 
						||
            if lca_matrix[token_j.i][token_k.i] != -2:
 | 
						||
                return lca_matrix[token_j.i][token_k.i]
 | 
						||
            elif token_j == token_k:
 | 
						||
                lca_index = token_j.i
 | 
						||
            elif token_k.head == token_j:
 | 
						||
                lca_index = token_j.i
 | 
						||
            elif token_j.head == token_k:
 | 
						||
                lca_index = token_k.i
 | 
						||
            elif (token_j.head == token_j) and (token_k.head == token_k):
 | 
						||
                lca_index = -1
 | 
						||
            else:
 | 
						||
                lca_index = __pairwise_lca(token_j.head, token_k.head,
 | 
						||
                                           lca_matrix)
 | 
						||
            lca_matrix[token_j.i][token_k.i] = lca_index
 | 
						||
            lca_matrix[token_k.i][token_j.i] = lca_index
 | 
						||
 | 
						||
            return lca_index
 | 
						||
 | 
						||
        lca_matrix = numpy.empty((len(self), len(self)), dtype=numpy.int32)
 | 
						||
        lca_matrix.fill(-2)
 | 
						||
        for j in range(len(self)):
 | 
						||
            token_j = self[j]
 | 
						||
            for k in range(j, len(self)):
 | 
						||
                token_k = self[k]
 | 
						||
                lca_matrix[j][k] = __pairwise_lca(token_j, token_k, lca_matrix)
 | 
						||
                lca_matrix[k][j] = lca_matrix[j][k]
 | 
						||
        return lca_matrix
 | 
						||
 | 
						||
    def to_disk(self, path, **exclude):
 | 
						||
        """Save the current state to a directory.
 | 
						||
 | 
						||
        path (unicode or Path): A path to a directory, which will be created if
 | 
						||
            it doesn't exist. Paths may be either strings or Path-like objects.
 | 
						||
        """
 | 
						||
        path = util.ensure_path(path)
 | 
						||
        with path.open('wb') as file_:
 | 
						||
            file_.write(self.to_bytes(**exclude))
 | 
						||
 | 
						||
    def from_disk(self, path, **exclude):
 | 
						||
        """Loads state from a directory. Modifies the object in place and
 | 
						||
        returns it.
 | 
						||
 | 
						||
        path (unicode or Path): A path to a directory. Paths may be either
 | 
						||
            strings or `Path`-like objects.
 | 
						||
        RETURNS (Doc): The modified `Doc` object.
 | 
						||
        """
 | 
						||
        path = util.ensure_path(path)
 | 
						||
        with path.open('rb') as file_:
 | 
						||
            bytes_data = file_.read()
 | 
						||
        return self.from_bytes(bytes_data, **exclude)
 | 
						||
 | 
						||
    def to_bytes(self, **exclude):
 | 
						||
        """Serialize, i.e. export the document contents to a binary string.
 | 
						||
 | 
						||
        RETURNS (bytes): A losslessly serialized copy of the `Doc`, including
 | 
						||
            all annotations.
 | 
						||
        """
 | 
						||
        array_head = [LENGTH, SPACY, LEMMA, ENT_IOB, ENT_TYPE]
 | 
						||
 | 
						||
        if self.is_tagged:
 | 
						||
            array_head.append(TAG)
 | 
						||
        # if doc parsed add head and dep attribute
 | 
						||
        if self.is_parsed:
 | 
						||
            array_head.extend([HEAD, DEP])
 | 
						||
        # otherwise add sent_start
 | 
						||
        else:
 | 
						||
            array_head.append(SENT_START)
 | 
						||
        # Msgpack doesn't distinguish between lists and tuples, which is
 | 
						||
        # vexing for user data. As a best guess, we *know* that within
 | 
						||
        # keys, we must have tuples. In values we just have to hope
 | 
						||
        # users don't mind getting a list instead of a tuple.
 | 
						||
        serializers = {
 | 
						||
            'text': lambda: self.text,
 | 
						||
            'array_head': lambda: array_head,
 | 
						||
            'array_body': lambda: self.to_array(array_head),
 | 
						||
            'sentiment': lambda: self.sentiment,
 | 
						||
            'tensor': lambda: self.tensor,
 | 
						||
        }
 | 
						||
        if 'user_data' not in exclude and self.user_data:
 | 
						||
            user_data_keys, user_data_values = list(zip(*self.user_data.items()))
 | 
						||
            serializers['user_data_keys'] = lambda: msgpack.dumps(user_data_keys)
 | 
						||
            serializers['user_data_values'] = lambda: msgpack.dumps(user_data_values)
 | 
						||
 | 
						||
        return util.to_bytes(serializers, exclude)
 | 
						||
 | 
						||
    def from_bytes(self, bytes_data, **exclude):
 | 
						||
        """Deserialize, i.e. import the document contents from a binary string.
 | 
						||
 | 
						||
        data (bytes): The string to load from.
 | 
						||
        RETURNS (Doc): Itself.
 | 
						||
        """
 | 
						||
        if self.length != 0:
 | 
						||
            raise ValueError(Errors.E033.format(length=self.length))
 | 
						||
        deserializers = {
 | 
						||
            'text': lambda b: None,
 | 
						||
            'array_head': lambda b: None,
 | 
						||
            'array_body': lambda b: None,
 | 
						||
            'sentiment': lambda b: None,
 | 
						||
            'tensor': lambda b: None,
 | 
						||
            'user_data_keys': lambda b: None,
 | 
						||
            'user_data_values': lambda b: None,
 | 
						||
        }
 | 
						||
 | 
						||
        msg = util.from_bytes(bytes_data, deserializers, exclude)
 | 
						||
        # Msgpack doesn't distinguish between lists and tuples, which is
 | 
						||
        # vexing for user data. As a best guess, we *know* that within
 | 
						||
        # keys, we must have tuples. In values we just have to hope
 | 
						||
        # users don't mind getting a list instead of a tuple.
 | 
						||
        if 'user_data' not in exclude and 'user_data_keys' in msg:
 | 
						||
            user_data_keys = msgpack.loads(msg['user_data_keys'],
 | 
						||
                                           use_list=False, raw=False)
 | 
						||
            user_data_values = msgpack.loads(msg['user_data_values'], raw=False)
 | 
						||
            for key, value in zip(user_data_keys, user_data_values):
 | 
						||
                self.user_data[key] = value
 | 
						||
 | 
						||
        cdef int i, start, end, has_space
 | 
						||
 | 
						||
        if 'sentiment' not in exclude and 'sentiment' in msg:
 | 
						||
            self.sentiment = msg['sentiment']
 | 
						||
        if 'tensor' not in exclude and 'tensor' in msg:
 | 
						||
            self.tensor = msg['tensor']
 | 
						||
 | 
						||
        start = 0
 | 
						||
        cdef const LexemeC* lex
 | 
						||
        cdef unicode orth_
 | 
						||
        text = msg['text']
 | 
						||
        attrs = msg['array_body']
 | 
						||
        for i in range(attrs.shape[0]):
 | 
						||
            end = start + attrs[i, 0]
 | 
						||
            has_space = attrs[i, 1]
 | 
						||
            orth_ = text[start:end]
 | 
						||
            lex = self.vocab.get(self.mem, orth_)
 | 
						||
            self.push_back(lex, has_space)
 | 
						||
            start = end + has_space
 | 
						||
        self.from_array(msg['array_head'][2:], attrs[:, 2:])
 | 
						||
        return self
 | 
						||
 | 
						||
    def extend_tensor(self, tensor):
 | 
						||
        '''Concatenate a new tensor onto the doc.tensor object.
 | 
						||
 | 
						||
        The doc.tensor attribute holds dense feature vectors
 | 
						||
        computed by the models in the pipeline. Let's say a
 | 
						||
        document with 30 words has a tensor with 128 dimensions
 | 
						||
        per word. doc.tensor.shape will be (30, 128). After
 | 
						||
        calling doc.extend_tensor with an array of shape (30, 64),
 | 
						||
        doc.tensor == (30, 192).
 | 
						||
        '''
 | 
						||
        xp = get_array_module(self.tensor)
 | 
						||
        if self.tensor.size == 0:
 | 
						||
            self.tensor.resize(tensor.shape, refcheck=False)
 | 
						||
            copy_array(self.tensor, tensor)
 | 
						||
        else:
 | 
						||
            self.tensor = xp.hstack((self.tensor, tensor))
 | 
						||
 | 
						||
    def retokenize(self):
 | 
						||
        '''Context manager to handle retokenization of the Doc.
 | 
						||
        Modifications to the Doc's tokenization are stored, and then
 | 
						||
        made all at once when the context manager exits. This is
 | 
						||
        much more efficient, and less error-prone.
 | 
						||
 | 
						||
        All views of the Doc (Span and Token) created before the
 | 
						||
        retokenization are invalidated, although they may accidentally
 | 
						||
        continue to work.
 | 
						||
        '''
 | 
						||
        return Retokenizer(self)
 | 
						||
 | 
						||
    def _bulk_merge(self, spans, attributes):
 | 
						||
        """Retokenize the document, such that the spans given as arguments
 | 
						||
         are merged into single tokens. The spans need to be in document
 | 
						||
         order, and no span intersection is allowed.
 | 
						||
 | 
						||
        spans (Span[]): Spans to merge, in document order, with all span
 | 
						||
            intersections empty. Cannot be emty.
 | 
						||
        attributes (Dictionary[]): Attributes to assign to the merged tokens. By default,
 | 
						||
            must be the same lenghth as spans, emty dictionaries are allowed.
 | 
						||
            attributes are inherited from the syntactic root of the span.
 | 
						||
        RETURNS (Token): The first newly merged token.
 | 
						||
        """
 | 
						||
        cdef unicode tag, lemma, ent_type
 | 
						||
 | 
						||
        assert len(attributes) == len(spans), "attribute length should be equal to span length" + str(len(attributes)) +\
 | 
						||
                                              str(len(spans))
 | 
						||
        with self.retokenize() as retokenizer:
 | 
						||
            for i, span in enumerate(spans):
 | 
						||
                fix_attributes(self, attributes[i])
 | 
						||
                remove_label_if_necessary(attributes[i])
 | 
						||
                retokenizer.merge(span, attributes[i])
 | 
						||
 | 
						||
    def merge(self, int start_idx, int end_idx, *args, **attributes):
 | 
						||
        """Retokenize the document, such that the span at
 | 
						||
        `doc.text[start_idx : end_idx]` is merged into a single token. If
 | 
						||
        `start_idx` and `end_idx `do not mark start and end token boundaries,
 | 
						||
        the document remains unchanged.
 | 
						||
 | 
						||
        start_idx (int): Character index of the start of the slice to merge.
 | 
						||
        end_idx (int): Character index after the end of the slice to merge.
 | 
						||
        **attributes: Attributes to assign to the merged token. By default,
 | 
						||
            attributes are inherited from the syntactic root of the span.
 | 
						||
        RETURNS (Token): The newly merged token, or `None` if the start and end
 | 
						||
            indices did not fall at token boundaries.
 | 
						||
        """
 | 
						||
        cdef unicode tag, lemma, ent_type
 | 
						||
        if len(args) == 3:
 | 
						||
            deprecation_warning(Warnings.W003)
 | 
						||
            tag, lemma, ent_type = args
 | 
						||
            attributes[TAG] = tag
 | 
						||
            attributes[LEMMA] = lemma
 | 
						||
            attributes[ENT_TYPE] = ent_type
 | 
						||
        elif not args:
 | 
						||
            fix_attributes(self, attributes)
 | 
						||
        elif args:
 | 
						||
            raise ValueError(Errors.E034.format(n_args=len(args),
 | 
						||
                                                args=repr(args),
 | 
						||
                                                kwargs=repr(attributes)))
 | 
						||
        remove_label_if_necessary(attributes)
 | 
						||
 | 
						||
        attributes = intify_attrs(attributes, strings_map=self.vocab.strings)
 | 
						||
 | 
						||
        cdef int start = token_by_start(self.c, self.length, start_idx)
 | 
						||
        if start == -1:
 | 
						||
            return None
 | 
						||
        cdef int end = token_by_end(self.c, self.length, end_idx)
 | 
						||
        if end == -1:
 | 
						||
            return None
 | 
						||
        # Currently we have the token index, we want the range-end index
 | 
						||
        end += 1
 | 
						||
        with self.retokenize() as retokenizer:
 | 
						||
            retokenizer.merge(self[start:end], attrs=attributes)
 | 
						||
        return self[start]
 | 
						||
 | 
						||
    def print_tree(self, light=False, flat=False):
 | 
						||
        """Returns the parse trees in JSON (dict) format.
 | 
						||
 | 
						||
        light (bool): Don't include lemmas or entities.
 | 
						||
        flat (bool): Don't include arcs or modifiers.
 | 
						||
        RETURNS (dict): Parse tree as dict.
 | 
						||
 | 
						||
        EXAMPLE:
 | 
						||
            >>> doc = nlp('Bob brought Alice the pizza. Alice ate the pizza.')
 | 
						||
            >>> trees = doc.print_tree()
 | 
						||
            >>> trees[1]
 | 
						||
            {'modifiers': [
 | 
						||
                {'modifiers': [], 'NE': 'PERSON', 'word': 'Alice',
 | 
						||
                'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP',
 | 
						||
                'lemma': 'Alice'},
 | 
						||
                {'modifiers': [
 | 
						||
                    {'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det',
 | 
						||
                    'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}],
 | 
						||
                'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN',
 | 
						||
                'POS_fine': 'NN', 'lemma': 'pizza'},
 | 
						||
                {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct',
 | 
						||
                'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}],
 | 
						||
                'NE': '', 'word': 'ate', 'arc': 'ROOT', 'POS_coarse': 'VERB',
 | 
						||
                'POS_fine': 'VBD', 'lemma': 'eat'}
 | 
						||
        """
 | 
						||
        return parse_tree(self, light=light, flat=flat)
 | 
						||
 | 
						||
 | 
						||
cdef int token_by_start(const TokenC* tokens, int length, int start_char) except -2:
 | 
						||
    cdef int i
 | 
						||
    for i in range(length):
 | 
						||
        if tokens[i].idx == start_char:
 | 
						||
            return i
 | 
						||
    else:
 | 
						||
        return -1
 | 
						||
 | 
						||
 | 
						||
cdef int token_by_end(const TokenC* tokens, int length, int end_char) except -2:
 | 
						||
    cdef int i
 | 
						||
    for i in range(length):
 | 
						||
        if tokens[i].idx + tokens[i].lex.length == end_char:
 | 
						||
            return i
 | 
						||
    else:
 | 
						||
        return -1
 | 
						||
 | 
						||
 | 
						||
cdef int set_children_from_heads(TokenC* tokens, int length) except -1:
 | 
						||
    cdef TokenC* head
 | 
						||
    cdef TokenC* child
 | 
						||
    cdef int i
 | 
						||
    # Set number of left/right children to 0. We'll increment it in the loops.
 | 
						||
    for i in range(length):
 | 
						||
        tokens[i].l_kids = 0
 | 
						||
        tokens[i].r_kids = 0
 | 
						||
        tokens[i].l_edge = i
 | 
						||
        tokens[i].r_edge = i
 | 
						||
    # Set left edges
 | 
						||
    for i in range(length):
 | 
						||
        child = &tokens[i]
 | 
						||
        head = &tokens[i + child.head]
 | 
						||
        if child < head:
 | 
						||
            head.l_kids += 1
 | 
						||
        if child.l_edge < head.l_edge:
 | 
						||
            head.l_edge = child.l_edge
 | 
						||
 | 
						||
    # Set right edges --- same as above, but iterate in reverse
 | 
						||
    for i in range(length-1, -1, -1):
 | 
						||
        child = &tokens[i]
 | 
						||
        head = &tokens[i + child.head]
 | 
						||
        if child > head:
 | 
						||
            head.r_kids += 1
 | 
						||
        if child.r_edge > head.r_edge:
 | 
						||
            head.r_edge = child.r_edge
 | 
						||
 | 
						||
 | 
						||
    # Set sentence starts
 | 
						||
    for i in range(length):
 | 
						||
        if tokens[i].head == 0 and tokens[i].dep != 0:
 | 
						||
            tokens[tokens[i].l_edge].sent_start = True
 | 
						||
 | 
						||
 | 
						||
def pickle_doc(doc):
 | 
						||
    bytes_data = doc.to_bytes(vocab=False, user_data=False)
 | 
						||
    hooks_and_data = (doc.user_data, doc.user_hooks, doc.user_span_hooks,
 | 
						||
                      doc.user_token_hooks)
 | 
						||
    return (unpickle_doc, (doc.vocab, dill.dumps(hooks_and_data), bytes_data))
 | 
						||
 | 
						||
 | 
						||
def unpickle_doc(vocab, hooks_and_data, bytes_data):
 | 
						||
    user_data, doc_hooks, span_hooks, token_hooks = dill.loads(hooks_and_data)
 | 
						||
 | 
						||
    doc = Doc(vocab, user_data=user_data).from_bytes(bytes_data,
 | 
						||
                                                     exclude='user_data')
 | 
						||
    doc.user_hooks.update(doc_hooks)
 | 
						||
    doc.user_span_hooks.update(span_hooks)
 | 
						||
    doc.user_token_hooks.update(token_hooks)
 | 
						||
    return doc
 | 
						||
 | 
						||
 | 
						||
copy_reg.pickle(Doc, pickle_doc, unpickle_doc)
 | 
						||
 | 
						||
def remove_label_if_necessary(attributes):
 | 
						||
    # More deprecated attribute handling =/
 | 
						||
    if 'label' in attributes:
 | 
						||
        attributes['ent_type'] = attributes.pop('label')
 | 
						||
 | 
						||
def fix_attributes(doc, attributes):
 | 
						||
    if 'label' in attributes and 'ent_type' not in attributes:
 | 
						||
        if isinstance(attributes['label'], int):
 | 
						||
            attributes[ENT_TYPE] = attributes['label']
 | 
						||
        else:
 | 
						||
            attributes[ENT_TYPE] = doc.vocab.strings[attributes['label']]
 | 
						||
    if 'ent_type' in attributes:
 | 
						||
        attributes[ENT_TYPE] = attributes['ent_type']
 |