mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	Changes: 1. train_ner won't crash if no data directory is not found 2. Fixed train_tagger expected spacy.gold.GoldParse, got list
		
			
				
	
	
		
			74 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			74 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import unicode_literals, print_function
 | 
						||
import json
 | 
						||
import pathlib
 | 
						||
import random
 | 
						||
 | 
						||
import spacy
 | 
						||
from spacy.pipeline import EntityRecognizer
 | 
						||
from spacy.gold import GoldParse
 | 
						||
from spacy.tagger import Tagger
 | 
						||
 | 
						||
 | 
						||
def train_ner(nlp, train_data, entity_types):
 | 
						||
    ner = EntityRecognizer(nlp.vocab, entity_types=entity_types)
 | 
						||
    for itn in range(5):
 | 
						||
        random.shuffle(train_data)
 | 
						||
        for raw_text, entity_offsets in train_data:
 | 
						||
            doc = nlp.make_doc(raw_text)
 | 
						||
            gold = GoldParse(doc, entities=entity_offsets)
 | 
						||
            ner.update(doc, gold)
 | 
						||
    ner.model.end_training()
 | 
						||
    return ner
 | 
						||
 | 
						||
 | 
						||
def main(model_dir=None):
 | 
						||
    if model_dir is not None:
 | 
						||
        model_dir = pathlib.Path(model_dir)
 | 
						||
        if not model_dir.exists():
 | 
						||
            model_dir.mkdir()
 | 
						||
        assert model_dir.is_dir()
 | 
						||
 | 
						||
    nlp = spacy.load('en', parser=False, entity=False, add_vectors=False)
 | 
						||
 | 
						||
    # v1.1.2 onwards
 | 
						||
    if nlp.tagger is None:
 | 
						||
        print('---- WARNING ----')
 | 
						||
        print('Data directory not found')
 | 
						||
        print('please run: `python -m spacy.en.download –force all` for better performance')
 | 
						||
        print('Using feature templates for tagging')
 | 
						||
        print('-----------------')
 | 
						||
        nlp.tagger = Tagger(nlp.vocab, features=Tagger.feature_templates)
 | 
						||
 | 
						||
    train_data = [
 | 
						||
        (
 | 
						||
            'Who is Shaka Khan?',
 | 
						||
            [(len('Who is '), len('Who is Shaka Khan'), 'PERSON')]
 | 
						||
        ),
 | 
						||
        (
 | 
						||
            'I like London and Berlin.',
 | 
						||
            [(len('I like '), len('I like London'), 'LOC'),
 | 
						||
            (len('I like London and '), len('I like London and Berlin'), 'LOC')]
 | 
						||
        )
 | 
						||
    ]
 | 
						||
    ner = train_ner(nlp, train_data, ['PERSON', 'LOC'])
 | 
						||
 | 
						||
    doc = nlp.make_doc('Who is Shaka Khan?')
 | 
						||
    nlp.tagger(doc)
 | 
						||
    ner(doc)
 | 
						||
    for word in doc:
 | 
						||
        print(word.text, word.tag_, word.ent_type_, word.ent_iob)
 | 
						||
 | 
						||
    if model_dir is not None:
 | 
						||
        with (model_dir / 'config.json').open('w') as file_:
 | 
						||
            json.dump(ner.cfg, file_)
 | 
						||
        ner.model.dump(str(model_dir / 'model'))
 | 
						||
 | 
						||
 | 
						||
if __name__ == '__main__':
 | 
						||
    main()
 | 
						||
    # Who "" 2
 | 
						||
    # is "" 2
 | 
						||
    # Shaka "" PERSON 3
 | 
						||
    # Khan "" PERSON 1
 | 
						||
    # ? "" 2
 |