spaCy/spacy/cli/pretrain.py
Ines Montani 37c7c85a86 💫 New JSON helpers, training data internals & CLI rewrite (#2932)
* Support nowrap setting in util.prints

* Tidy up and fix whitespace

* Simplify script and use read_jsonl helper

* Add JSON schemas (see #2928)

* Deprecate Doc.print_tree

Will be replaced with Doc.to_json, which will produce a unified format

* Add Doc.to_json() method (see #2928)

Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space.

* Remove outdated test

* Add write_json and write_jsonl helpers

* WIP: Update spacy train

* Tidy up spacy train

* WIP: Use wasabi for formatting

* Add GoldParse helpers for JSON format

* WIP: add debug-data command

* Fix typo

* Add missing import

* Update wasabi pin

* Add missing import

* 💫 Refactor CLI (#2943)

To be merged into #2932.

## Description
- [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi)
- [x] use [`black`](https://github.com/ambv/black) for auto-formatting
- [x] add `flake8` config
- [x] move all messy UD-related scripts to `cli.ud`
- [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO)

### Types of change
enhancement

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.

* Update wasabi pin

* Delete old test

* Update errors

* Fix typo

* Tidy up and format remaining code

* Fix formatting

* Improve formatting of messages

* Auto-format remaining code

* Add tok2vec stuff to spacy.train

* Fix typo

* Update wasabi pin

* Fix path checks for when train() is called as function

* Reformat and tidy up pretrain script

* Update argument annotations

* Raise error if model language doesn't match lang

* Document new train command
2018-11-30 20:16:14 +01:00

329 lines
12 KiB
Python

# coding: utf8
from __future__ import print_function, unicode_literals
import plac
import random
import numpy
import time
import ujson
import sys
from collections import Counter
from pathlib import Path
from thinc.v2v import Affine, Maxout
from thinc.api import wrap
from thinc.misc import LayerNorm as LN
from thinc.neural.util import prefer_gpu
from wasabi import Printer
from ..tokens import Doc
from ..attrs import ID, HEAD
from ..compat import json_dumps
from .._ml import Tok2Vec, flatten, chain, zero_init, create_default_optimizer
from .. import util
@plac.annotations(
texts_loc=("Path to jsonl file with texts to learn from", "positional", None, str),
vectors_model=("Name or path to vectors model to learn from"),
output_dir=("Directory to write models each epoch", "positional", None, str),
width=("Width of CNN layers", "option", "cw", int),
depth=("Depth of CNN layers", "option", "cd", int),
embed_rows=("Embedding rows", "option", "er", int),
use_vectors=("Whether to use the static vectors as input features", "flag", "uv"),
dropout=("Dropout", "option", "d", float),
seed=("Seed for random number generators", "option", "s", float),
nr_iter=("Number of iterations to pretrain", "option", "i", int),
)
def pretrain(
texts_loc,
vectors_model,
output_dir,
width=96,
depth=4,
embed_rows=2000,
use_vectors=False,
dropout=0.2,
nr_iter=1000,
seed=0,
):
"""
Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
using an approximate language-modelling objective. Specifically, we load
pre-trained vectors, and train a component like a CNN, BiLSTM, etc to predict
vectors which match the pre-trained ones. The weights are saved to a directory
after each epoch. You can then pass a path to one of these pre-trained weights
files to the 'spacy train' command.
This technique may be especially helpful if you have little labelled data.
However, it's still quite experimental, so your mileage may vary.
To load the weights back in during 'spacy train', you need to ensure
all settings are the same between pretraining and training. The API and
errors around this need some improvement.
"""
config = dict(locals())
msg = Printer()
util.fix_random_seed(seed)
has_gpu = prefer_gpu()
msg.info("Using GPU" if has_gpu else "Not using GPU")
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
msg.good("Created output directory")
util.write_json(output_dir / "config.json", config)
msg.good("Saved settings to config.json")
# Load texts from file or stdin
if texts_loc != "-": # reading from a file
texts_loc = Path(texts_loc)
if not texts_loc.exists():
msg.fail("Input text file doesn't exist", texts_loc, exits=1)
with msg.loading("Loading input texts..."):
texts = list(util.read_jsonl(texts_loc))
msg.good("Loaded input texts")
random.shuffle(texts)
else: # reading from stdin
msg.text("Reading input text from stdin...")
texts = stream_texts()
with msg.loading("Loading model '{}'...".format(vectors_model)):
nlp = util.load_model(vectors_model)
msg.good("Loaded model '{}'".format(vectors_model))
pretrained_vectors = None if not use_vectors else nlp.vocab.vectors.name
model = create_pretraining_model(
nlp,
Tok2Vec(
width,
embed_rows,
conv_depth=depth,
pretrained_vectors=pretrained_vectors,
bilstm_depth=0, # Requires PyTorch. Experimental.
cnn_maxout_pieces=2, # You can try setting this higher
subword_features=True,
),
) # Set to False for character models, e.g. Chinese
optimizer = create_default_optimizer(model.ops)
tracker = ProgressTracker()
msg.divider("Pre-training tok2vec layer")
row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
for epoch in range(nr_iter):
for batch in util.minibatch_by_words(
((text, None) for text in texts), size=5000
):
docs = make_docs(nlp, [text for (text, _) in batch])
loss = make_update(model, docs, optimizer, drop=dropout)
progress = tracker.update(epoch, loss, docs)
if progress:
msg.row(progress, **row_settings)
if texts_loc == "-" and tracker.words_per_epoch[epoch] >= 10 ** 7:
break
with model.use_params(optimizer.averages):
with (output_dir / ("model%d.bin" % epoch)).open("wb") as file_:
file_.write(model.tok2vec.to_bytes())
log = {
"nr_word": tracker.nr_word,
"loss": tracker.loss,
"epoch_loss": tracker.epoch_loss,
"epoch": epoch,
}
with (output_dir / "log.jsonl").open("a") as file_:
file_.write(json_dumps(log) + "\n")
tracker.epoch_loss = 0.0
if texts_loc != "-":
# Reshuffle the texts if texts were loaded from a file
random.shuffle(texts)
def stream_texts():
for line in sys.stdin:
yield ujson.loads(line)
def make_update(model, docs, optimizer, drop=0.0):
"""Perform an update over a single batch of documents.
docs (iterable): A batch of `Doc` objects.
drop (float): The droput rate.
optimizer (callable): An optimizer.
RETURNS loss: A float for the loss.
"""
predictions, backprop = model.begin_update(docs, drop=drop)
gradients = get_vectors_loss(model.ops, docs, predictions)
backprop(gradients, sgd=optimizer)
# Don't want to return a cupy object here
# The gradients are modified in-place by the BERT MLM,
# so we get an accurate loss
loss = float((gradients ** 2).mean())
return loss
def make_docs(nlp, batch):
docs = []
for record in batch:
text = record["text"]
if "tokens" in record:
doc = Doc(nlp.vocab, words=record["tokens"])
else:
doc = nlp.make_doc(text)
if "heads" in record:
heads = record["heads"]
heads = numpy.asarray(heads, dtype="uint64")
heads = heads.reshape((len(doc), 1))
doc = doc.from_array([HEAD], heads)
if len(doc) >= 1 and len(doc) < 200:
docs.append(doc)
return docs
def get_vectors_loss(ops, docs, prediction):
"""Compute a mean-squared error loss between the documents' vectors and
the prediction.
Note that this is ripe for customization! We could compute the vectors
in some other word, e.g. with an LSTM language model, or use some other
type of objective.
"""
# The simplest way to implement this would be to vstack the
# token.vector values, but that's a bit inefficient, especially on GPU.
# Instead we fetch the index into the vectors table for each of our tokens,
# and look them up all at once. This prevents data copying.
ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
target = docs[0].vocab.vectors.data[ids]
d_scores = prediction - target
return d_scores
def create_pretraining_model(nlp, tok2vec):
"""Define a network for the pretraining. We simply add an output layer onto
the tok2vec input model. The tok2vec input model needs to be a model that
takes a batch of Doc objects (as a list), and returns a list of arrays.
Each array in the output needs to have one row per token in the doc.
"""
output_size = nlp.vocab.vectors.data.shape[1]
output_layer = chain(
LN(Maxout(300, pieces=3)), zero_init(Affine(output_size, drop_factor=0.0))
)
# This is annoying, but the parser etc have the flatten step after
# the tok2vec. To load the weights in cleanly, we need to match
# the shape of the models' components exactly. So what we cann
# "tok2vec" has to be the same set of processes as what the components do.
tok2vec = chain(tok2vec, flatten)
model = chain(tok2vec, output_layer)
model = masked_language_model(nlp.vocab, model)
model.tok2vec = tok2vec
model.output_layer = output_layer
model.begin_training([nlp.make_doc("Give it a doc to infer shapes")])
return model
def masked_language_model(vocab, model, mask_prob=0.15):
"""Convert a model into a BERT-style masked language model"""
random_words = RandomWords(vocab)
def mlm_forward(docs, drop=0.0):
mask, docs = apply_mask(docs, random_words, mask_prob=mask_prob)
mask = model.ops.asarray(mask).reshape((mask.shape[0], 1))
output, backprop = model.begin_update(docs, drop=drop)
def mlm_backward(d_output, sgd=None):
d_output *= 1 - mask
return backprop(d_output, sgd=sgd)
return output, mlm_backward
return wrap(mlm_forward, model)
def apply_mask(docs, random_words, mask_prob=0.15):
N = sum(len(doc) for doc in docs)
mask = numpy.random.uniform(0.0, 1.0, (N,))
mask = mask >= mask_prob
i = 0
masked_docs = []
for doc in docs:
words = []
for token in doc:
if not mask[i]:
word = replace_word(token.text, random_words)
else:
word = token.text
words.append(word)
i += 1
spaces = [bool(w.whitespace_) for w in doc]
# NB: If you change this implementation to instead modify
# the docs in place, take care that the IDs reflect the original
# words. Currently we use the original docs to make the vectors
# for the target, so we don't lose the original tokens. But if
# you modified the docs in place here, you would.
masked_docs.append(Doc(doc.vocab, words=words, spaces=spaces))
return mask, masked_docs
def replace_word(word, random_words, mask="[MASK]"):
roll = random.random()
if roll < 0.8:
return mask
elif roll < 0.9:
return random_words.next()
else:
return word
class RandomWords(object):
def __init__(self, vocab):
self.words = [lex.text for lex in vocab if lex.prob != 0.0]
self.probs = [lex.prob for lex in vocab if lex.prob != 0.0]
self.words = self.words[:10000]
self.probs = self.probs[:10000]
self.probs = numpy.exp(numpy.array(self.probs, dtype="f"))
self.probs /= self.probs.sum()
self._cache = []
def next(self):
if not self._cache:
self._cache.extend(
numpy.random.choice(len(self.words), 10000, p=self.probs)
)
index = self._cache.pop()
return self.words[index]
class ProgressTracker(object):
def __init__(self, frequency=1000000):
self.loss = 0.0
self.prev_loss = 0.0
self.nr_word = 0
self.words_per_epoch = Counter()
self.frequency = frequency
self.last_time = time.time()
self.last_update = 0
self.epoch_loss = 0.0
def update(self, epoch, loss, docs):
self.loss += loss
self.epoch_loss += loss
words_in_batch = sum(len(doc) for doc in docs)
self.words_per_epoch[epoch] += words_in_batch
self.nr_word += words_in_batch
words_since_update = self.nr_word - self.last_update
if words_since_update >= self.frequency:
wps = words_since_update / (time.time() - self.last_time)
self.last_update = self.nr_word
self.last_time = time.time()
loss_per_word = self.loss - self.prev_loss
status = (
epoch,
self.nr_word,
"%.5f" % self.loss,
"%.4f" % loss_per_word,
int(wps),
)
self.prev_loss = float(self.loss)
return status
else:
return None